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STRIiP: A Self-Timed RISC Processor

ABSTRACT

Most modern microprocessors and subsystems use a global synchronizing clock to
sequence through their operations. Global circuit synchronization simplifies the design
and interfacing of the digital logic structures while minimizing the pipeline sequencing
overhead. But the worst-case design constraints, based on environment, process, and a
single critical logic path, limit a synchronous system's ability to take full advantage of the
available silicon performance. Synchronous operation and communication also restrict
efficient data transfer between devices of differing processing rates or access methods.
Although synchronous logic structures dominate the digital system industry, alternatives
must be considered which extract more of the available silicon performance, and provide
simple and efficient processing-rate-independent interfaces. Self-timed or asynchronous
digital systems and interfaces offer an attractive alternative to synchronous logic
structures by eliminating synchronous operating constraints. These systems provide
adaptive operation, efficient and flexible interfaces, reduced power consumption, and a
wider environmental operating range. Unfortunately, traditional self-timed designs have
not been extensively used. Their biggest problems are the complex logic structures and
overheads caused by completion detection and handshaking circuits.

STRIP is a self-timed RISC processor architecture that provides the logic simplicity
and sequencing efficiency of synchronous structures, along with adaptive operation, ef-
ficient asynchronous interfaces, and wide operating range of asynchronous structures.
The key concept in STRIP is a self-timed pipeline-sequencing method called dynamic
clocking. Dynamic clocking sequences the pipelined functional units in lock-step, but
adjusts each sequencing period to match the present environment, process, and pipelined
operations. This lock-step operation allows traditional synchronous logic structures to be
used. Each cycle's period is determined ahead of time, eliminating self-timed sequencing
overheads. To support a fully asynchronous interface, the dynamic-clock generator stops
the clock until external dependencies are resolved. Results show that a dynamically
clocked RISC processor will operate twice as fast as a equivalent synchronous processor,
both built with the same silicon technology.
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Chapter 1

Introduction

The ever-increasing processing power required to handle today's commercial applications
dictates the design of computer systems that fully exploit the capabilities offered by
contemporary VLSI technologies. Many architectures and logic structures exist which
help to minimize the execution times of these applications. But even with the most
advance architectural methods, there is significantly more performance available within
existing silicon technologies. System and processor performance is lost because of the
worst-case design constraints required for synchronous operation. We will show that
self-timed sequencing of a processor's pipeline, along with an enhanced memory system
and asynchronous external interface, significantly improve the operational efficiency of
the processor complex.

11 Processor Design

Optimizing a processor's execution rate has become a key component in maximizing a
computer system's performance. A processor's performance is often measured as the
time required to execute a set of instructions. The following formula for CPU time gives
the key elements controlling processor performance:

CPU time = Clock cycle time * CPI * Instruction Count



Introduction 2

The three elements determining processor performance are: the period of each processor
clock cycle, the number of cycles-per-instruction (CPI), and the number of instructions
required to process the targeted information. Modern architectures attempt to reduce the
cycle time of the processor, minimize its CPI, and limit the number of instructions
required to run an application.

The most significant advancement of recent years which is used by most modern
processor architectures is pipelining.  Pipelining divides each instruction into
independent operations, allowing parallel execution with other instructions. By
permitting parallel execution of multiple instructions, pipelining utilizes an application's
available instruction-level parallelism, minimizing the total cycles required to execute
that application. Superscalar and superpipelined architectures further utilize instruction-
level parallelism, providing the best compromise between cycle time and CPI. Studies
have determined that superscalar and superpipelined architectures provide approximately
the same level of performance; 30-40% more than a basic scalar architecture [50, 54, 96].
But independent of their architecture, all modern processors are constrained by the same
sequencing paradigm; synchronous operation.

Synchronous processor design and operation are based on a global synchronizing
clock. External data transfers are based on the same clock. Synchronous operation
simplifies the processor's design by eliminating the need for hazard-free logic structures,
which greatly reduces the size and complexity of the combinational logic. Unfortunately,
synchronous operation also restricts the processor to a worst-case operating frequency in
order to guarantee operation under all possible conditions. Since the clock frequency for
a synchronous processor is constant, its execution rate is independent of the operating
conditions. But the actual speed of the processor varies with the environmental
conditions (voltage and temperature), silicon process, and pipeline operations. For
reliable operation, the clock frequency must be slower than the operating rate required
under worst-case conditions. This results in a reduced utilization of the technologies
performance when the processor is operating under typical conditions. Therefore,
synchronous operation provides ease of implementation while restricting the ability of
the processor to fully utilize the raw performance of the silicon technologies.

In an attempt to eliminate synchronous operating constraints, numerous asynchronous
or self-timed logic structures and design styles have been studied and implemented [18,
21, 22, 23, 24, 25, 28, 45, 46, 59, 63, 68, 70, 72, 74, 87, 99, 104, 108]. A few
researchers have applied these techniques to processor design [23, 45, 58a, 63, 68]. Self-
timed processor design is a discipline of digital design in which the sequencing control of
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the processor's pipeline is distributed over the elements which compose that pipeline. In
contrast, a synchronous processor operates based on a central global clock; all pipeline
elements processing in lock-step. Self-timed digital systems provide several advantages:
operation which tracks the processor's environment (voltage and temperature) and
process, external asynchronous interfaces that are adaptive and efficient, and a wider and
more reliable operating range. In theory, a self-timed processor provides the system with
all its available silicon performance and allows efficient data transfer independent of the
individual operating rates of the communicating devices.

Realizing these theoretical advantages is not necessarily easy, however. Since they
require variable encodings to support completion detection, self-timed systems typically
require complex logic structures. Also, the completion detection and communication
overhead required during sequencing reduce the efficiency of the pipeline. Because of
these constraints, no self-timed processor implementation has been commercialized. But,
our research shows that by utilizing the operational characteristics of a processor pipeline
structure, self-timed pipeline operation can be greatly simplified. By using a
synchronous structure with a self-adjusting clock, the complexity and overhead of
asynchronous structures are avoided while providing adaptive operation, a wide
operating range, and self-timed external interfaces.

1.2 STRIiP Principles

STRIP is a self-timed RISC processor implementation. Their are two main elements
which made the STRiP implementation possible. The first is the use of a self-timed
synchronous-pipeline sequencing structure called dynamic clocking. A dynamically
clocked processor uses a synchronous pipeline structure which is sequenced by an self-
adjusting global clock. The dynamic-clock generator is self-contained on the processor
chip allowing it to track changes in temperature, voltage, and process. It also receives
feedback information from the pipeline permitting it to adjust the clocks period to the
requirements of the pending pipeline operations. To support a fully asynchronous
external interface the dynamic-clock generator stops the clock until external
dependencies are resolved. Dynamic clocking eliminates the complexity and overheads
common to traditional self-timed structures. It also provides adaptive pipeline sequencing
and an efficient external interface which interconnects devices independent of their
individual operating rates. Our research shows that a dynamically clocked processor can
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extract twice as much performance from existing silicon technologies than is possible
through traditional synchronous approaches.

To optimize the performance of a self-timed pipeline, the memory system access time
must be removed from the critical logic path. The most common solution to this problem
is to pipeline the first-level caches. This decreases the effective access time of the caches
but increases the pipeline depth, resulting in increased branch and load penalties. A
better approach is to add small, low-latency caches, called zero-level caches, between the
CPU and the first-level caches. To reduce the miss rate normally associated with small
caches (less than 256 bytes), an adaptive prefetching method called predictive
prefetching was developed. Predictive prefetching uses a history of references to predict
future data and instruction references. The combination of zero-level caching and
predictive prefetching reduced the memory system latency by half, removing the memory
system from the critical logic paths of the processor.

1.3 Thesis Organization

To understand the performance bottlenecks in current processors, one must first
understand the basics of high performance processor design. Chapter 2 reviews the
structural elements which determine performance levels in modern processors. It also
describes two elements of pipeline operation which were the basis of our research at
Stanford: pipeline sequencing and memory system design. The next two chapters give
detailed descriptions of specific logic structures developed to improve pipeline
sequencing and memory system performance. Chapter 5 provides detailed designs of
basic structures required for a efficient STRiP implementation and gives processor
performance measurements which are then compared with performance parameters of an
equivalent synchronous design. Finally, the thesis concludes with possible enhancements
to the proposed self-timed organization.



Chapter 2

High Performance Processor Design

The demand for high performance computer systems has spawned thousands of research
papers, technical books, architectures, and actual implementations in the field of high-
performance processor design. This chapter provides the background for understanding
the architectural and structural improvements in processor design proposed in Chapter 3
and 4. The chapter will focus on two dominant aspects of processor design: pipeline
sequencing and memory system design. Both areas significantly affect and often limit the
performance of contemporary processors. The chapter presents design and processing
constraints for both domains of processor design, allowing the reader to understand the
proposed logic structures and how they improve performance within existing silicon
technologies.

2.1 Elements of Performance

Processor performance is measured in many different ways. Basically, the computer that
performs the same amount of work in the least time is the fastest. We will use the
processing time of the central-processing unit (CPU) as the processor performance
measure (excluding waiting for I/O responses). As discussed in Chapter 1 we express
processor performance by the following formula:

CPU time = Clock cycle time * CPI * Instruction Count
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This formula illustrates how processor performance is dependent upon three major
elements. One element, clock cycle time, is often divided into two components: the
number of gates in the critical logic path and the gate delay of the silicon technology.
The methods involved in improving the characteristics of each performance component
are interdependent, making it difficult to isolate and improve one characteristic without
degrading the other characteristics. Instruction count is constrained by the instruction set
architecture (CISC, RISC, VLIW) and the compiler technology. The processor's CPI is
controlled by the processor's hardware organization, but is also affected by the
instruction set architecture. The silicon technology, as well as hardware organization,
determines the cycle time, or sequencing rate, of the processor. By increasing
functionality of instructions, CISC and VLIW architectures decrease the instruction
count, but increase the CPI and cycle time. RISC architectures reduce the CPI, and
typically the cycle time, but increase the instruction count by simplifying the instruction
set. Advances in VLSI technology have allowed significant decreases in cycle times,
providing speedups regardless of the processor architecture. However, the hardware
organization used affects the utilization of the available silicon performance.

Instruction X [ IF | RF | ALU [ MEM | WB
Instruction X+1 [ IF | RF | ALUMEM| WB |
Instruction X+2 | IF | RF | ALU |MEM | WB |
Instruction X+3 |_IF RF | ALU | MEM| WB |
Instruction X+4 IF RF | ALU [ MEM | WB |
Operations:
IF - Instruction Fetch

RF - Register Fetch and Instruction Decode
ALU - ALU Operation

MEM - Data Memory Access

WB - Register Write-back

Figure 2.1: Timing template for a general five-stage RISC pipeline.
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Most modern processors use a hardware organization called pipelining [37, 58] which
increases performance by overlapping the execution steps of different instructions. To
pipeline instructions the various steps of instruction execution are performed by
independent functional units or pipe stages. To execute an instruction, the processor
passes it from one pipe stage to the next until all of the required operations have been
performed. The pipe stages are separated by registers or latches. At any given moment
there are several instructions in progress, each occupying a different pipe stage. Figure
2.1 illustrates how each instruction overlaps the operations of other instructions in a
typical RISC pipeline. Each line segment represents one pipeline cycle. Pipelining
reduces the average number of cycles required to execute an instruction without
appreciably increasing the processor cycle time. Compared to a non-pipelined design,
pipelining results in a significant improvement in processor performance.

Other hardware organizations attempt to increase performance by further exploiting
instruction-level parallelism. The MIPS R4000 [57] uses superpipelining to segment the
pipe stages into smaller and faster units, increasing the number of pipe stages and
reducing the processor's cycle time. But superpipelining increases the cycle penalties
caused by branch and load hazards, resulting in a higher CPI.

Superscalar processors like the RS/6000 [33, 34, 35, 38] and i860 [44] attempt to
exploit fine-grain instruction parallelism by utilizing multiple, independently-pipelined
functional units, allowing multiple instructions to be issued per cycle. Even though a
superscalar architecture provides a significant potential for high processing rates, there
are key problems in the exploitation of low-level parallelism by a superscalar
organization: detecting data and control dependencies, resolving these dependencies, and
scheduling the order of instruction execution. Static and dynamic code scheduling
algorithms are used to optimize the available paralielism and resolve these dependencies.
Although superscalar processors reduce the effective CPI, the complexity of instruction
scheduling and register bypassing, and the increase in signal loading increase the
processor's cycle time.

Jouppi [54], Johnson [50], and Smith [96] showed that there is a limited amount of
instruction-level parallelism within existing applications. These studies showed a CPI
improvement of 30%-40% for a dual-issue superscalar processor with in-order issue and
out-of-order completion. Jouppi also showed that superpipelining and superscalar
techniques are roughly equivalent ways of exploiting instruction-level parallelism.
Smith's research suggests that if instruction scheduling is restricted to a single basic
block, most simple pipeline machines exploit a significant amount of the instruction-level
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parallelism, even without parallel instruction issue or higher degrees of pipelining. These
results suggest that other hardware organizations must be developed to increase the
processor performance without significantly increasing its complexity.

Our research has concentrated on improving processor performance by reducing its
cycle time without effecting the instruction count or CPI. One approach to reducing the
cycle time is to increase the pipeline sequencing efficiency. Section 2.2 describes the
constraints of existing processor sequencing methods and how they limit the performance
extracted from the silicon technologies. Another way of reducing the cycle time of the
processor is to improve the performance of the constraining functional elements. In
many computer systems the memory subsystem performance dramatically affects, and in
many cases limits, the performance of advanced microprocessors. Section 2.3 provides a
brief study of existing memory systems and how they affect the processor performance.
Each section proposes a method of improving processor performance without
significantly changing the pipeline organization of the processor. Chapter 3 and 4 then
provide a detailed understanding of the proposed structural enhancements.

2.2 Sequencing Methods

Instruction execution through a pipeline of functional units requires the processor and
system design to adhere to a strict pipeline sequencing method. A sequencing method, or
discipline, is characterized by the way it connects sequence and time. This section
describes two pipeline sequencing methods: synchronous and asynchronous or self-timed.
Synchronous systems are the best known and most widely used, mainly because of their
design simplicity. These systems use a single signal (or set of signals) called clocks to
relate sequence to time. But synchronous systems pose some serious limitations, which
are made even worse as silicon technologies scale down and chips become larger. Self-
timed systems provide a viable alternative to the traditional sequencing method by
connecting sequence and time in the interior of each logic element rather than through a
global clock. Connected properly, self-timed elements provide correct sequential
operation which is insensitive to element and wire delays. But the design complexities
and the sequencing overheads of self-timed systems have limited their use. This section
describes the design constraints of synchronous and self-timed systems and proposes an
alternative sequencing structure which combines the advantages of both.
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2.2.1 Synchronous Systems

Today's processors, both public domain and proprietary, are dominated by a synchronous
design philosophy. In the synchronous design discipline the processor depends on a
global synchronizing signal or clock to connect the properties of sequence and time [84].
The transitions of the clock serve to define the instants at which processor state changes
may occur. The period of the clock serves as a time reference for the latency and wire
delay of the connected clocked elements. Difficulties relative to the designing,
optimizing, modifying, and reliably operating synchronous processors arise from binding
the sequencing and timing constraints of the processor's functional elements.

Most processors are constructed using a set of functional units (ALU, decoder,
register file, etc.) connected via a pipeline structure. Figure 2.2 gives a general block
diagram of a synchronous RISC processor pipeline structure. All functional-unit
operations are initiated by the clock transitions and their latencies or access times must be
less than one or multiple clock periods. To provide a finer time resolution, the clock can
be split into phases. Typically the phases are non-overlapping to remove the need of
supporting two-sided timing constraints [31, 37, 64]. Two-sided timing constraints refer
to the minimum and maximum delay requirements imposed on the functional units by a
single-phase clocking structure. A multi-phase, non-overlapping discipline removes all
minimum delay requirements. Figure 2.3 shows how clocks are connected in a single-
phase and multi-phase pipeline and the combinational logic delay constraints. But the
use of multi-phase, non-overlapping clock structures becomes more difficult as clock
frequencies and chip size increase because of the relative increase in clock skew [46].

The pipeline's functional units are combinational logic blocks. They are separated by
one or two storage elements, depending on their processing latency and the
synchronization point required between adjacent functional units. Sietz [84] gives three
important consequences of a synchronous pipeline structure on the functional units'
logical design: it assures deterministic behavior if the physical aspects of the design are
also correct, it relieves the designer of any requirement that the combinational logic be
free of transients (static or dynamic hazards) on it outputs, and it ensures that the storage-
or history-dependence of the system resides entirely within the clocked storage elements,
simplifying the design process, maintenance, and testing of the system. Synchronous-
processor pipeline designs have been extensively researched and evaluated, and
numerous references exist which detail their implementation [1, 5, 26, 31, 36, 42, 43, 44,
47,52, 55, 56, 67,71, 76, 77, 85, 98, 100, 102, 106].
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Figure 2.2: Block diagram of general RISC pipeline.

The synchronous design characteristics listed in the previous paragraph are the main
reasons synchronous digital systems dominate the digital design industry. Combinational
logic used in a synchronous data path or control unit (i.e. finite-state machine) need not
be free of logic hazards, simplifying its implementation. Tools have been developed to
aid the design of logic for synchronous machines. Also, the period of the synchronous
system's global clock can be statically altered to match the processing requirements of the
functional units. If a unit is slower than expected, the system will still function at a
slower clock rate. The global clock also guarantees a constant operating rate. The
computation time of a synchronous system for a given operation will always be the same
and will always yield the same result. These attributes have allowed synchronous
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processor design to be the simplest, most area efficient, and most popular processor
implementation structure.
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Figure 2.3: (a) Single-phase and (b) multi-phase clock waveforms and pipelines.
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DESIGN CONSTRAINTS

Although synchronous processor designs have proven to be effective, testable, and
usually scalable, they have yet to take full advantage of the base technology's available
performance. Present CMOS process technologies allow commercial microprocessors
and systems to operate at external clock rates of up to 66MHz (Intel 1860 and HP PA).
That same CMOS process can produce significantly more performance if synchronous
design constraints were not required. Since the clock period is static, the operating
frequency of the processor must be set assuming worst-case operating conditions. The
clocking structure is unable to adapt to the system's operating environment. Thus, the
main performance limiting constraint of a synchronous processor design is that the
processor must operate assuming worst-case environmental conditions (temperature and
supply voltage) and worst-case process. Most CMOS component data books give signal
latencies and functional operating frequencies for best case, nominal, and worst-case
operating conditions. Table 2.1 gives the conditions which define these three categories.
Figure 2.4 illustrates the dependence of VLSI circuit speeds on process and

environmental parameters.

Environmental Parameters Environmental Conditions Units
Best Case  Nominal Worst-Case

Commercial:

Supply Voltage, Vcc 5.25 5.00 475 Volts

Operating free-air Temperature, TA 0 25 70 °C
Military:

Supply Voltage, Vcc 5.50 5.00 4.50 Volts

Operating free-air Temperature, TA -55 25 125 °C

Table 2.1: Operating Condition Categories for Military and Commercial CMOS devices.

Manufacturers attempt to take advantage of process variations by sorting their VLSI
components into groups, or bin-splits, which defines the components operating frequency
under worst-case conditions. These bin-splits result from frequency deterministic test
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Figure 2.4: Propagation delay as a function of temperature, voltage, and process
(LSI 0.7um CMOS process, April 1990).

performed on each VLSI component during the manufacturing process. For example,
Intel sorts its i860 processors, and support components, into three frequency groups;
50MHz, 40MHz, and 33MHz. The percent performance increase between adjacent
frequency groups is 25% and 21%, respectively. Since the frequency test are discrete
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and start at the highest discrete operating frequency and work down, the actual worst-
case operating frequency of each component is unknown. A component failing the
50MHz test, but passing the 40MHz test, may actual operated reliably at 45MHz, a loss
in potential operating performance of 12.5%. Most system designers are aware of this
performance loss but are unable to safely take advantage of any available component
performance above the specified limit.

Another design constraint of synchronous processor implementation is how the
critical logic paths among the pipelined functional units limit the sequencing efficiency
of the structure. The sequencing of a pipeline structure is typically limited by one critical
logic path. In many cases that critical logic path's frequency-of-use is low. For example,
in the MIPS-X processor developed at Stanford University [17, 42], the most critical
pipeline logic path was the Compare-and-Branch operation. But this operation was only
required approximately 15% of the time [37, 75]. The next most critical logic path, the
Add operation, required approximately six fewer gate delays or 12.5% less logic delay
than the most critical pipeline path. This results in a 10% lost in performance (0.85 x
.125) over a optimally clocked or asynchronous structure. Therefore, the synchronous
processor is typically operating at a rate slower than that required for most logical
operations. ’

While the wire delay for the interconnection of local devices is still insignificant with
respect to circuit speeds, a wire that traverses an entire integrated circuit (IC) can have
appreciable delay. This fact decreases the efficiency of a global synchronizing signal or
clock since it must be distributed over the entire chip area. The global-clock signal wire
delays cause clock skews which must be compensated for by reducing the functional unit
latencies or increasing the time between phases of a multi-phase clocking scheme. Since
critical path functional units are optimized to begin with, the clock period must be
lengthened to support any clock skew in the global clock signal.

One way to avoid clock skew and infrequently used critical path dependencies is to
divide the processor into processing units, each independently sequenced by a local
clock. This results in a locally synchronous, globally asynchronous processor structure
[16]. The problem with this approach is the difficulty of synchronizing the data transfer
between two processing units. Since the synchronization overhead can be significant,
care must be taken in partitioning the functional unit into processing units. The
synchronization process must also avoid prolonged metastable conditions which would
cause unreliable processor operation. Because of the synchronization overhead and
potential for metastable conditions, most designers partition the processing units so that
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their functional delays are some multiple of a global clock period. This approach, while
not optimum, removes the problem of synchronization.

A significant problem with synchronous structures at the system level is the
requirement that elements constructed using a variety of technologies and architectures
must operate at a common clock rate or at an integer division of that clock rate. This
implies, for example, that a RISC processor constructed using a 0.8um CMOS process
must operate synchronously with a FPU constructed using a 1.2um BiCMOS process and
a DMA controller constructed using a 1.6um CMOS process. The optimal operating
frequency of each of these components may well be different. The problem is
compounded by the fact that many synchronous system elements are inherently
asynchronous. Exampies of these elements include caches built using discrete SRAMSs,
system memory built using DRAMSs, and channel interface units or switches which
connect to mostly asynchronous buses (FutureBus, VME, Micro Channel, EISA, ISA,
etc.). This mix of technologies, structures, and interfaces causes a designer to trade-off
efficient individual element operation for synchronous operation among ail eiements. In
most cases, without synchronous operation among connected devices, the communication
overhead between devices is unacceptable and metastable conditions are unavoidable.

The synchronous digital system constraints discussed limit a designer's ability to
extract the available performance potential of most silicon technologies. The next
section discusses alternatives to a synchronous system structure that can extract more

performance from present silicon technologies.
2.2.2  Asynchronous Systems

In the literature, the terms synchronous, asynchronous, and self-timed can refer to
different things in different contexts. As defined in the previous sections, a synchronous
system or processor transfers information between communicating logic elements in
lock-step with a global clock signal. An asynchronous system or processor is one where
the information transfer between communicating logic elements is NOT performed in
synchrony with a global clock signal, but is performed at times determined by the
latencies of the communicating logic elements. Asynchronous systems are constructed
with self-timed logic elements. Therefore, an asynchronous system or processor will also
be referred to as "self-timed".

The temporal control of a self-timed system is delegated to the communicating logic
elements used to construct the system. Time and sequence are related inside these logic
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elements, such that signal transitions at their terminals must occur in predefined order.
Signal transitions at a self-timed element's input initiate processing, while output signal
events indicate completion of processing. The time required to perform a computation is
determined by the delay between initiation and completion, and by interconnection
delays. To provide proper operation, communicating self-timed logic elements are
connected through a closed control-signal path, usually containing a request and
acknowledge signal. A self-timed element cannot request or accept new input data until
the connected logic elements or storage devices acknowledge receiving the result of its
previous computation. This communication protocol allows each self-timed element's
operational characteristics to be isolated from the characteristics of the other system
elements. An asynchronous interface can remove many timing constraints from the
system level design.

ADVANTAGES

An asynchronous digital system can avoid many of the constraints associated with a
synchronous digital system. The first advantage of an asynchronous digital system is its
ability to adapt its operation rate to the silicon process parameters (resulting from the
VLSI manufacturing process) and environmental operating conditions (temperature and
supply voltage). Therefore, an asynchronous processor built from a CMOS technology
will execute faster at 5.5 volts and 0°C than at 4.5 volts and 70°C. In general, this allows
a self-timed design to take full advantage of the available silicon performance. Also this
adaptability allows self-timed circuits to operate over a wider environmental range. The
reliable operating range of an asynchronous system is limited only by the silicon's
physical resiliency to damage, and not a range dictated by a global clock. These factors
allow a single asynchronous system to support both commercial and military
environments while providing the best possible performance for any given operating
environment.

If all the elements in a system or processing complex are self-timed, the system
designer will be able to interface logic elements through an asynchronous communication
protocol. This communication protocol allows each self-timed element's operational
characteristics to be isolated from the characteristics of the other system elements. As a
result, processor complex chip-sets will not be rendered incompatible or inefficient
whenever the processors silicon technology improves. The asynchronous logic systems
can provide system designers with: correct operation without understanding the
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synchronization constraints of each independent system element, faster development
cycles since each logic element need not be redesigned for efficient system operation, a
longer usable life for subsystem logic elements, and a design structure which provides
the maximum achievable performance for the technology and operating conditions
provided. Also, performance is maximized without any lost in system reliability and
robustness.

DESIGN CONSTRAINTS

With the obvious advantages of self-timed system structures, present self-timed
circuit designs have some negative attributes which have hampered their use in general-
purpose computer systems. The key component in a computer system is the CPU.
Without an asynchronous CPU, or processor, an asynchronous system is impossible to
implement efficiently. Only a few asynchronous general-purpose processors have been
proposed [23, 58a, 63]. Most general-purpose processors contain complex data paths
and a multi-token pipeline structure. A multi-token pipeline is a pipeline structure where
each functional unit is operating on a different data variable, or token, during any given
cycle. With the new generation of microprocessors using 64-bit data paths (i.e. MIPS
R4000, Intel i860, IBM RS/6000, HP PA-RISC) encoding of logic signals to support
self-timed operation presents some serious problems.

Dual-rail variable encoding is the most widely used style of self-timed circuit design
[6, 11, 18, 21, 24, 28, 46, 59, 62, 69, 87, 104, 108]. Figure 2.5 gives example data
streams for three dual-rail encoding schemes. These variable encodings increase the
implementation complexity of the connected functional units. To illustrate this, Figure
2.6 shows two dual-rail implementations of a full-adder element [69, 84). Using dual-
rail encoding allows the sequencing-control logic to detect completion of each functional
unit operation. A traditional two-input dual-rail completion detector is shown in Figure
2.7. The gate labeled "C" is a Muller C-element. The C-element's output becomes 1
when all the inputs are 1, becomes 0 when all the inputs are 0, and remains at the
previous output state when the inputs are not all 0 or 1. The use of a C-element tree is
required to detect completion for a larger number of variables. C-elements are discussed
in more detail in a later chapter. Figures 2.5, 2.6, and 2.7 show the basic configurations
and complexities of traditional self-timed logic structures.
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Encoding

Single-Rail 0 1 0 1 1 0 1
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Figure 2.5: Example data stream showing complexities of dual-rail encoding schemes.

Another problem with building a self-timed, multi-token pipeline structure is the time
required to generate a completion detection signal and the communication overhead
required to support data transfer between adjoining pipelined elements. Figure 2.8
illustrates how self-timed elements are typically connected in a asynchronous pipeline
structure. The asynchronous sequencing overheads result from the completion detector
(CDs) and C-element (Cs) delays. These devices communicate the operating condition
of each logic block to its successor and predecessor, adding to the sequencing period of
that logic block. Williams [108] has shown how this overhead can affect the pipeline's
throughput and provides a detailed discussion of the performance levels of several
asynchronous pipeline structures. He also proposed methods for minimizing both
completion detection and communication overheads. By using a single data-variable bit
to detect completion (rather than using a full completion tree for all the bits), Williams
significantly reduced the completion detection overhead for the carry-save-adders used in
his divider circuit. He eliminated the communication overhead between function
elements by pipelining the communication operations among the internal elements. This
was possible since the divider operated on one token at a time. Because of the functional
unit granularity required, these methods are less efficient for multi-token, pipelines used
in general-purpose processors.
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Figure 2.8: A traditional asynchronous pipeline structure.

* Another way to minimize the effects of completion detection and communication is
to construct large processing elements so that the delay of completion detection and
communication is small compared to the processing elements' delays [69]. But in a
general-purpose, VLSI processor the functional units may only require 20 series gate
delays (as is required by the functional units described in Chapter 5), while the
completion detector and communication signalling requires three gate delays, minimum
(one C-element and one NOR when using a single data-bit pair for completion detection).
For this example, the completion detection circuit would increase the functional unit
latency by roughly 15%.

Considering that development tools for self-timed circuit design are still being
researched, it's difficult for a system designer to implement a efficient and competitive
self-timed processor or logic system, but not impossible. DSPs [46, 69], control logic,
multi-processor switch networks, and even a 16-bit RISC processor [63] have been
implemented using self-timed logic structures. But before self-timed logic becomes
widely accepted, its implementation complexity and size must be reduced and its
performance level must be proven better than an equivalent synchronous design.
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2.2.3 Self-Timed Synchronous Systems

Even with the potential for adaptive operation and ease of interfacing, self-timed
processor designs have yet to be commercialized. The increased complexity and
sequencing overhead of self-timed logic structures have limited their use in processor and
system designs. The ideal pipeline sequencing method would have the implementation
size, complexity, and design ease of a synchronous pipeline with the adaptive operation
(to environmental conditions and process parameters), wide operating range, and
interfacing efficiency common to self-timed structures. Chapter 3 describes a pipeline
sequencing method with these characteristics called dynamic clocking.

Dynamic clocking is a pipeline sequencing method which is best described as a self-
timed, synchronous structure. All pipelined functional units sequence in lock-step via a
global sequencing signal. The period of this signal adapts on a cycle-by-cycle basis to
the environmental conditions, process parameters, and pending pipeline operations. The
pipeline sequencing signal, or "clock”, also stops and waits for operations with
indeterminate delays to complete (external memory and I/O transfers). This design style
supports a fully asynchronous external interface. The main goal of dynamic clocking is
to provide processor and system designers with a sequencing and interface method which
uses synchronous design tools and logic elements while providing the interface efficiency
and performance available through self-timing.

23 Memory System Design

Memory system performance dramatically effects, and in many cases limits the
performance of advanced microprocessors. The ability to reduce the average access time
of the memory system depends on many factors: the processor's architecture, the
program's behavior, the caches' sizes and organizations, and the fetch and prefetch
strategies. A balance must be struck between the caches' access times (the general rule is
smaller caches have lower latencies), the caches' miss rates, and the penalty paid for a
cache miss. Ideally, the first-level cache access time is less than the other pipelined
functional unit latencies and the miss rate is low. The main goal in developing a more
efficient memory system is to minimize the average time required to access a memory
word. This section first describes the hardware and software techniques presently being
researched, developed, and used to optimize memory system performance in advanced
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microprocessors. Finally, a modification to the traditional memory hierarchy is proposed
which significantly improves memory system performance and processor efficiency.

2.3.1 Caching

Caches are used in all forms of computer systems: embedded controllers, laptops,
personal computers, workstations, mainframes, and supercomputers. Caching is the
simplest way of maximizing a system's performance. Because of their importance to
efficient system operation, caches have been extensively studied over the years. A. J.
Smith [93] lists over 400 books and papers published since 1968. Since Smith's
bibliography, many other documents have been written analyzing cache structure and
operation. Studies have focused on cache size [2, 92], associativity [39, 41, 78, 97],
block size [79, 941, and fetch size and fetch strategies [7, 15, 32, 40, 53, 60, 81, 90, 91,
95]. Przybylski [78] gives the most complete study and analysis of each of the maijor
memory hierarchy design variables and their inter-dependencies.  Since present
integrated circuit technology allows a CPU and a small first-level cache to reside on a
single chip, studies on how to maximize the performance and efficiency of small caches
are numerous. Most of the small cache studies have deal only with hit rates [2, 4, 30, 41]
and have not considered implementation complexity, access time, and interface
efficiency.

Reducing the average access time for instruction and data requests is the main goal of
any memory system design. Excluding the register file, the cache closest to the CPU, or
first-level cache, has the shortest access time and highest bandwidth of all the levels in
the memory hierarchy. Since most program behavior exhibit the principles of spatial
locality, temporal locality, and instruction sequentiality, most CPU accesses are
contained in the first-level cache(s). An efficient memory system design has an average
memory access time approximately equal to the access time of the first-level cache.

There are several ways to reduce the effective access time of data and instruction
references to the memory system. One way is to increase the memory system's
throughput by pipelining the first-level caches [61, 75]. This technique is usually
required when the first-level caches have an access time greater than the operational
latency of the other functional units in the pipeline. The MIPS R4000 is an example of a
processor that employs first-level cache pipelining. This pipeline cache caused two
dependency hazards in the machine, one for data and one for instructions. For data,
dependency checking logic stalls the machine to ensure a data load operation completes
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before the data is required by subsequent instructions. For instructions, the pipeline
cache increases the number of cycles required to restart the pipeline after a miss
predicted branch operation occurs. Therefore, the problems with this technique is that
it increases the number of stages in the pipeline (resulting in an increase in the branch
and load penalties) and forces the memory unit to be more complex.

Another technique to reduce the average access time of data references is to provide
queues, either explicitly architected or transparent to the user, that allow the machine to
continue executing instructions while waiting for the memory request to be serviced.
Since the memory system speed is not integrated into the processors architecture,
more hardware is required to resolve data conflicts. The IBM 801 [10] provides a single
element transparent queue that allows instructions after a load, which do not use the
requested data, to continue to operate after the joad reference is initiated. Queues have
also been used in the instruction fetch stream. Intel's X86 family of processors use
instruction queues to fetch ahead of the instruction request and disconnect the memory
system performance from the processors sequencing rate.

Another method of improving the performance of instruction references is the use of
target instruction buffers. Rau [81] first suggested the use of target instruction buffers
for CISC type instruction streams (IBM 360) and Hill [40] examines their use in other
architectures. A target instruction buffer stores the targets of previous non-sequentialities
in the instruction stream, These targets include the target word after a branch and 4
succeeding words in an attempt to eliminate the penalty of a non-sequentiality in the
instruction stream. When a branch is taken, the instructions are taken out of the target
instruction buffer and the instruction-fetch control logic references instructions sequential
to the ones in the buffer. Buffering of a couple of the most recent targets produced a
significant improvement in memory system performance. Rau and Rossman [82] later
studied the effect these buffers have on the IBM 370, CDC 6600, and the Manchester
University MUS5 system. They found that the use of prefetch buffers and target
instruction buffers reduced instruction fetch delays by 50%. The AMD29000 [S] used a
target instruction buffer in early processor implementations. The main problem with this
fetch structure is the high amount of continuous memory bandwidth required in the next
level of the memory hierarchy.

To improve the performance of data references Jouppi [53] suggest the use of miss
caching and victim caching to improve the first-level cache's average miss penalty. Miss
caching places a small fully-associative cache between the first-level cache and the next
level in the memory hierarchy. The miss-cache stores the missed cache blocks in a LRU
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fashion. Misses in the cache that hit in the miss-cache have only a one-cycle miss
penalty. Victim caching is an improvement to miss caching where the cache block
replaced by the new cache entry is stored in the small fully-associative cache. Both
methods increase the associative of a directed mapped cache and are most effective in
the data stream. Jouppi also suggested the use of stream buffers in the refill path of a
direct-mapped instruction cache to store prefetched cache blocks starting at a cache miss
address. This is similar to the fetch-on-fault prefetch strategy described in Chapter 4, but
removes the requirement of dual-porting the cache. None of these techniques reduces the
access time of the first-level cache, but they do minimize the first-level cache miss
penalty. Therefore, these caching techniques provide no reduction in the pipeline's
cycle time, one of the main goals of our research.

2.3.2 Fetch and Prefetch Strategies

One criteria used in all memory system designs is the minimization of the first-level
cache miss ratio. The miss ratio of a first-level cache is often limited by its size, which is
typically controlled by the availabie technology. To further reduce its miss ratio
aggressive fetch and prefetch strategies are required. There have been a number of
studies of fetch and prefetch strategies [7, 15, 30, 32, 53, 60, 66, 81, 90, 91]. We define
fetch strategy as the interface method and protocol used to access and transfer
information into a cache memory and processor pipeline during a cache miss operation.
Prefetch strategy is defined as the interface method and protocol used to access and
transfer information into a cache memory or data buffer before it is requested by the
processor. Prefetching is typically based on previous processor reference patterns. The
history of reference patterns may simply be the last reference, used in sequential
prefetching, or the collection of all previous references, used in predictive prefetching.
Specifying a fetch strategy involves defining a control algorithm for a significant
number of operational parameters. The basic fetch parameters include: which word in a
cache block is returned first, when is the processor allowed to continue execution, what
replacement algorithm is used, and how many subblocks or blocks are retrieved during a
fetch. The most common fetch strategy, called non-blocking-requested-word-first
(nbrwf), fetches based on a cache miss, returns the requested word first, allows the
processor to continue execution after the first word is retrieved, and fetches a total of one
cache block (fetch size = block size). Modifications to this strategy include: blocking-
sequential-word-first (bswf) a very simple policy where the processor execution is stalled
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until the entire cache block is fetched or terminating-non-blocking-requested-word-first
(mbrwf) where if another miss occurs while a fetch is in progress, terminate the fetch and
service the new processor request. Przybylski [78] found that the nbrwf fetch strategy
provided the best performance, though only 4% better than bswf.

A prefetch strategy contains the same basic fetch parameters as a fetch strategy plus
additional parameters to control when the prefetch occurs, when the prefetch operation
has priority over a processor request, and how deep in the memory hierarchy the prefetch
is propagated. An efficient prefetch strategy can reduce the miss rate of a cache or
prefetch buffer, resulting in a reduction of the memory-system average-access time. But,
often prefetching of instructions and data is not practical because of the lack of transfer
bandwidth between the cache and higher levels in the memory system. Also, while most
prefetch algorithms are effective at predicting future instruction references, they have a
difficult time predicting future data references. This has prompted research and
development of other methods of reducing the memory systems average access time.
The next section briefly describes an alternate method of using small low-latency caches
along with an aggressive prefetching algorithm to significantly reduce the average
access time of the memory system.

2.3.3  Predictive Prefetching

To minimize the access time of the first level in the memory heirarchy, we propose
adding very small fully-addressable prefetch buffers between the CPU and the first-level
cache(s). Their location in the memory hierarchy and their operational characteristics
lead us to call these prefetch-buffers zero-level caches or LO caches. Figure 2.9 shows
the location of the zero-level caches in a traditional memory hierarchy. Zero-level
caches are placed in both data and instruction reference paths. Because of their small
size (less than 256 bytes) zero-level caches have less than half the access delay of typical
internal first-level caches (usually 8KB in size). The zero-level cache size is restricted to
minimize the access time and to keep the implementation complexity of these fully-
associative caches manageable. Therefore, a zero-level cache is approximately 3% the
size and has less than half the latency of a typical internal first-level cache.
Unfortunately, previous implementations of small caches have tended to be
ineffective. The high miss ratios associated with small caches more than offset their fast
access times. To improve the miss ratios of the zero-level caches several fetch and
prefetch strategies were studied and simulated, and a new prefetch algorithm was created.
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Predictive prefetching is a hardware controlled prefetching method which uses a history
of reference patterns to predict the future reference patterns of the CPU. Predictive
prefetching is similar in concept to branch prediction using a branch-target-buffer [50,
65, 88], except it is designed to support the general reference stream for both instructions
and data. The main goal of predictive prefetching is to provide a simple and effective
means of prefetching processor references from the first-level caches to the zero-level
caches. With the proper interface size, block size, and cache size, predictive prefetching
allows the zero-level cache to have a hit-ratio similar to the first-level cache, but with a
access time no more than half that of a typical first-level cache. Chapter 4 gives details
of zero-level caching and predictive prefetching and their hardware implementation

structures.
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High Performance Processor Design 27

24 Summary

This chapter provided an overview of traditional pipeline sequencing methods.
Synchronous pipeline operation dominates modern processor designs but limits potential
processor performance because of worst-case design constraints. Traditional
asynchronous pipeline structures avoid worst-case design constraints by providing
adaptive operation and asynchronous interfaces. But these asynchronous structures are
constrained by pipeline sequencing overheads caused by completion signalling. We
proposed an alternative pipeline sequencing method called dynamic clocking. Dynamic
clocking is a self-timed synchronous sequencing method which provides the adaptive-
operating and efficient-interfacing characteristics common to asynchronous logic
structures while offering the implementation ease, sequencing efficiency, and small
physical design of synchronous design structures. Dynamic clocking gives the designer
more flexibility in determining the pipeline's sequencing dependencies and allows the
extraction of all the raw performance available in a silicon technology.

This chapter also described the attributes and constraints of modern memory system
designs. It suggested the use of fully addressable prefetch buffers between the CPU and
first-level caches to reduce the average memory system access time of a traditional
memory system. To help minimize the miss ratio of these small caches (less than 256
bytes), a prefetching algorithm is proposed. Predictive prefetching uses the history of
references to predict future instruction and data references. The main goal in modifying
the memory hierarchy is to reduce the average access time of the memory system to a
latency level less than the other critical pipeline stages. By using zero-level caches with
predictive prefetching and dynamic clocking, a processor's performance is improved:
average cycle time is reduced without increasing CPI or instruction count.
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Chapter 3

Dynamic Clocking

Dynamic clocking is a pipeline sequencing method for processors and controllers which
provides a mechanism for designing a self-timed, synchronous pipeline structure.
Dynamic clocking provides processor and system designers with a pipeline sequencing
and interface structure which uses synchronous design methods and logic elements,
provides environment and process dependent performance, and yields an efficient
asynchronous interface scheme.

This chapter provides a detailed description of a dynamic clocking structure for a
typical RISC processor. The basic dynamic clocking sequencing structure is given in
Section 3.1. Section 3.2 details the design constraints and implementation tradeoffs
involved when using dynamic clocking. Section 3.3 describes a dynamically-clocked
RISC processor which is based on the MIPS-X processor. An optimized RISC processor
implementation, which takes better advantage of self-timed operation, is described in
Chapter 5.

3.1 Basic Structure

There are two main goals targeted by the development of dynamic clocking. The first is
to improve processor performance by recovering the available silicon performance lost
because of synchronous design constraints. The second goal is to provide an efficient
and simple means of interconnecting chips and subsystems, independent of their
individual optimal operating rates. To achieve these two goals, a simple means of
asynchronously sequencing a processor pipeline is required. When compared to a
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synchronous design, this asynchronous sequencing method must not increase the logic
required to build the pipeline structure or decrease the typical performance of the
functional units. Therefore, we must understand the constraints limiting the throughput
of a synchronous processor and eliminate these constraints without significantly changing
the traditional logic structures used.

The throughput of a processor is determined by the functional units with the worst-
case operational latency. In general, synchronous designs using a static-frequency clock
are limited by the latency of the slowest operation among all the pipelined functional
units. This limitation holds true independent of the frequency-of-use of that operation.
A fully asynchronous pipeline, implemented using self-timed logic elements, is only
limited by the slowest operation for a given cycle. The slowest operation will vary on a
cycle-by-cycle basis. Because of the typical RISC pipeline structure and functional unit
design, the asynchronously-sequenced functional units which finish before the slowest
operation must wait until that operation has completed before advancing to the next data
token. This implies that as long as a pipeline can be sequenced based on the slowest
operation for each cycle, a fully asynchronous structure is not required to achieve
maximum performance.

Dynamic clocking uses a self-timed, synchronous pipeline sequencing structure,
avoiding the complexities of a fully asynchronous structure. It is a synchronous structure
clocked by an environmentally adaptable, operationally variable, stoppable clock. A
dynamically-clocked pipeline will sequence the functional units in lock-step based on the
environmental conditions, process parameters, and the critical-path operation pending for
each cycle. The dynamic-clock generator is on chip and receives operational information
from the pipeline functional units and provides a clock period long enough to support the
pending operations. The dynamic clock generator does not require an external oscillator
or crystal, so the use of a phase-lock-loops are not required. On operations where
latencies are indeterminate (data transfers between the processor and independently
sequenced devices) the clock will stop and wait until a completion signal is received
from the active processing unit. Finally, since the dynamic-clock generator is entirely on
the processor chip, its operation tracks the environmental conditions and process
parameters present for the logic elements in the pipeline.

Santoro [83] developed and tested a similar clocking structure for a interactive-array
multiplier used in a high-performance floating-point multiplier. He proved that a
functional unit's processing latency can accurately be tracked, and a local-clock generator
can be constructed around this tracking element. In the multiplier application, only one
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operation was tracked, a carry-save-add (CSA). Therefore, the clock was not required to
vary based on a variety of operations. The multiplier's clock generator did adjust for
changes in the silicon process and environment.

Santoro found that a tracking cell, constructed using the components of the CSA
critical-logic path, provided more accurate tracking of the CSA latency than did a
tracking cell constructed from a inverter chain. Also, the ability to start and stop the
clock for each multiply operation allowed automatic and efficient synchronization to all
input operands. This type of clock operation eliminates metastability concerns when
interfacing two non-synchronized devices.

Like Santoro's method, the dynamic clock generator uses tracking cells for delay
matching. However, there were additional complications because of the need to support
a variety of operations and dynamically adapt the clock period to those operations on
each cycle. Figure 3.1 is a general block diagram of a dynamic clock generator. The
tracking cells are chosen and designed dependent on the critical processing paths in the
pipeline. The expected utilization of each critical-logic path and its relative processing
latency are two main factors in deciding which paths will be tracked.
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Figure 3.1: General dynamic clocking structure.

The independent tracking of each critical-logic path supports a continuously running
dynamic clock generator, thus avoiding sequencing overhead caused by stopping the
clock, waiting for a completion signal, and starting the clock before each cycle
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(experienced in Santoro's application). To support this dynamic clocking scheme,
information from the instruction decoder, the caches, and the bus interface unit is used to
determine the operations required during the next pipeline cycle. The tracking cells
allow the clock generator to establish the clock period required for the next operation
during the present cycle. Therefore, the dynamic clock generator establishes the required
clock period ahead of when it is actually used to sequence the pipeline (in continuous
time units). Creating the clock ahead of time eliminates the communication overhead
associated with traditional completion detection schemes. The flow chart shown in
Figure 3.2 illustrates the sequence of operations required by a dynamically clocked
digital system.

The clock stops during data transfer cycles to devices outside the clocked pipeline
structure. The clock generator must wait on a completion signal from the transferring
device before processing can continue. The latency required to restart the clock is
composed of chip interface delays, generator delays, clock buffering delays, and the
clock distribution wires. In many cases the clock startup time is small compared to the
processing time of the transfer. Also, the clock-startup time can be overlapped with part
of the data-transfer time, reducing its overhead. The operations requiring stopping of the
clock would include: second-level cache accesses, memory system accesses, floating-
point unit transfers, I/O device transfers, and shutdown operations (to conserve power).

3.2 Constraints and Tradeoffs

The following subsections describe the constraints and critical elements which controlled
the dynamic clock generator implementation and the conmstruction of the pipelined

elements.
3.2.1 Tracking Cells

The tracking celis must accurately track the delay of the target operations and match the
variations caused by changes in temperature, voltage, and process. This can best be
accomplished by duplicating the series of gates, wires, and signal loads that exists in the
critical-logic path being tracked. The tracking cells must also be symmetric in their
output transition delays, providing a consistent clock period from cycle to cycle. Since
the minimum delay of the tracking cell must be greater-than the maximum delay of the
respective critical logic path, asymmetric operation reduces the efficiency of the dynamic
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clock generation. The goal is to have the cycle to cycle clock period variation for a
single critical-logic path be as small as possible (for constant environmental conditions

and process).

]
All tracking elements are triggered. All are set to provide a operating delay equivalent )
to the functional elements they track.
w
Clock period select inputs are received from key functional units, usually the instruction )
decoder, caches, and load/store unit.
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Figure 3.2: Flow-chart describing the sequence of operations required to support

dynamic clock generation.



Dynamic Clocking 34

Tracking cells are designed to match the critical-logic paths which dominate the
pipeline sequencing period. The designer must identify these dominant operations based
on their latency and frequency-of-use. Decoding of tracked operations must be available
at least during the cycle before the operations occur. This allows generation of select
signals for enabling the tracking cells in the dynamic clock generator. Section 3.3
provides an example of the tracking cell selection process for a dynamically clocked
RISC processor based on the MIPS-X implementation.

A tracking cell must also be designed so that its non-selected output transition occurs
before the output transition of the minimum delay tracking cell. Generally, the output
transition of a tracking cell is advanced by forcing the internal gates to switch in parallel,
instead of serially. Multiplexers are used to accomplish this.

3.2.2 C-element

The gate in Figure 3.1 labeled "C" is a Muller C-element [72]. It is in the clock
generation logic path. The main purpose of the C-element is to detect the transition of all
tracking cells and indicate to the pulse generator when all the tracking cells have timed-
out. The C-element operating characteristics allow several tracking cells to be activated
during a single clock cycle. The tracking cell with the longest delay will control the C-
element's switch point and thus the cycle time for that pipeline period.

The C-element delay must be minimized to reduce its overhead during clock
generation. The tracking cells are designed to hide most of the C-element delay without
sacrificing tracking efficiency. The amount of overhead caused by the C-element should
be less than 5%. The C-element must be non-inverting, have symmetric output transition
delay, and drive 16 standard loads. Since no existing design satisfied all these criteria,
we designed a new one which is described in Chapter 5.

3.2.3 Pulse Generator

The pulse width generated by the pulse generator must be greater than or equal to the
worst-case delay between the output transition of the pulse generator and the valid
transition of the inputs that select the period of the next clock. The series of elements
composing this delay includes: (a) the global clock buffers, (b) the clock distribution
network, (c) the local clock buffers, (d) the select control latch, and (e) the select input
wire delay. Another minor constraint on the pulse generator is the latching delay times
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of the pipeline storage elements (MIPS-X uses static latches while the STRiP
implementation assumed dynamic latches).

The pulse generator is basically a delay element connected to XOR/XNOR gates to
create a output pulse on each C-element output transition. Figure 3.3 is a block diagram
of the pulse generator. The pulse generator generates true and complement output
pulses, allowing true and complement clock signals to be generated. The output pulse
width, which becomes the @1 period, is set by the propagation time of the delay element.
The XOR/XNOR gates must be designed for symmetric and identical propagation delays.
This reduces their effects on the pulse width time set by the delay element. The pulse
generator adds to the skew between the clock generation point (the C-element output)
and the functional units, but has little effect on the dynamic clock period set by the

tracking cells.

XOR —* CLK
INPUT Delay Element to Clock
(Output of Buffers
C-element) | XNOR |—» CLK_b

Figure 3.3: Pulse Generator block diagram.

Figure 3.4 is a transistor-level schematic of the pulse generator. The delay element
consists of an inverter chain whose delay satisfies the select feedback constraint. Fifteen
inverters were used in the inverter chain, yielding a g1 period equal to approximately half
the minimum cycle time (equivalent to half the MIPS-X first-level cache latency of 30
gate delays). The XOR/XNOR gates were designed to provide symmetric operation, full
CMOS output levels (enough drive to support a fanout of 16) and minimum C-element
loading. The structure shown in Figure 3.4 provided the best compromise between
symmetry, drive and loading.

3.24 Clock Control and Distribution

Because of the dynamic clocking structure, a two-phase overlapping clock scheme is
used for the pipelined-functional units. Any series connected g1 and ¢2 latches must be
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physically located close enough to each other to allow a non-overlapping local qualified
clock buffer to be used, Figure 3.5(b). Even when the g1 and @2 latches are separated by
a logic element, care must be taken to insure proper operation (due to clock skews in the
clock distribution network). The use of locally-qualified clock buffers minimizes the
clock skew between functional units.
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Figure 3.4: Pulse Generator transisior level diagram.

The period of the dynamic clock generator clock must be controllable from an
external source to allow sufficient control for manufacturing test. Also, during normal
operation the clock periods generated by the tracking cells and the ¢1 period generated
by the pulse generator must be externally and separately adjustable. This feature is
referred to as the KNOB. This external adjustability allows an incorrectly tracked
operational delay to be compensated for by varying the tracking cell or pulse generator
delays. The KNOB adds enough flexibility to repair a non-functional sequencing
structure. Chapter 5 defines and evaluates implementation options for the KNOB.

If dynamic latches are used in the pipeline structure, the clocks must not be stopped
for more than the minimum dynamic storage time of the latches. The clock is suspended
during dependent transfers to devices operating asynchronously of the processor pipeline
(floating-point unit and external bus interface). This implies that a time-out timer be
incorporated to terminate the stopped-clock condition before latched data is lost. The use
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of static latches eliminates this concern but can decrease the performance of the
processor.
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Figure 3.5: Local qualified clock buffers: (a) single-phase and (b) two-phase non-
overlapping clock generation.

3.2.5  Functional Unit Design

Functional-unit operation must be independent of the dynamic-clock duty cycle. The
clock period will track pipeline variations caused by environmental, process, and
operational changes. But the clock duty cycle does not directly track variations in
functional unit operation. The select feedback delay is the main constraint setting the
clock high time (g1). The clock low time (¢2) varies with the selected tracking cells.
Therefore, functional units cannot depend on the length of the clock phases.

To satisfy this constraint, most precharged logic operations must be self-timed to
remove the signal-precharge constraints from the clock phase periods. Where possible,
static logic elements are used in the functional units. This design approach also
simplifies tracking cell implementation.
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3.2.6 Clock Buffers

The clock buffers are designed to minimize the clock skew between the pulse-generator
output and the inputs of the functional units. They also are required to drive the clock
distribution network. The clock distribution network we used was derived from the
MIPS-X implementation. This network consisted of four clock signals with 20pf of
load/clock distributed over 10mm of signal wire. The use of locally-qualified clock
buffers helped to reduced the total load seen by the global clock signals. To create the
clock buffers, a series of three inverters is used, each four times the previous inverter's
size. The sizes were 6x, 24x, and 96x the minimum inverter size used in the processor
design. The factor-of-four increase per logic stage has proven to be a good rule of thumb
for building static CMOS buffers [107].

If these ground rules and constraints are followed, a dynamically-clocked processor will
have most of the advantages of self-timed operations, and the implementation simplicity
of a synchronous design. The next section describes the configuration and operation of
the critical elements in the dynamic-clocking structure for a2 MIPS-X compatible

architecture.

33 A Self-Timed MIPS-X

The MIPS-X processor architecture provides a good platform for determining the
feasibility of using dynamic clocking on a RISC processor. The function unit designs are
unmodified except for the self-timing of some precharge operations. The addition of a
internal first-level data cache, of the size and complexity of the first-level instruction
cache, provides an implementation example closely matched to integration levels
achieved by other modern RISC processors. IRSIM and SPICE simulations are utilized
to establish the functional unit latencies and control overhead. Since much study and
analysis has been performed on RISC processors similar to MIPS-X, information is
readily available to help understand the instruction mix, projected cache hit rates, and
functional-unit performance and utilization. All of these elements are important in the
development of an efficient dynamically-clocked processor.

Figure 3.6 is a block diagram of the MIPS-X pipelined functional units and their
main interface signals. The dynamic clock generator replaces the normal synchronous
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clock generator. The dynamic clock generator differs from the typical synchronous clock
generator in the following ways:

(1) The dynamic clock generator does not require an external clock,
crystal, or oscillator input.

(2) The dynamic clock generator does not require phase-lock-loop
(PLL) circuitry.

(3) The dynamic clock generator uses feedback information from the
pipeline to determine the period of the next clock cycle.

(4) The dynamic-clock cycle time automatically adapts to variations in
process, temperature, and supply voltage.

The next section illustrates the tracking cell selection process for the MIPS-X
architecture and implementation.

3.3.1 Tracking Cell Selection

Since the period of each pipeline cycle is dependent on the pending operations in the
pipeline, and not on a single critical logic path, each functional unit must be optimized
independently. During the design of each functional unit, a tracking cell is designed to
match the operating structure of that unit. This tracking cell will provide the information
required by the dynamic clock generator to set the cycle time for that functional unit's
operation. Some functional units do not require tracking elements because their
optimized execution rate, or access time, is always less than other frequently used
pipeline operations. The performance and frequency-of-use of the functional units
determine which operations are tracked, thus determining the processors operating rate.
The dynamic clock generator tracking cells were chosen based on the analysis of the
propagation delays of the MIPS-X functional units and previous studies of instruction
usage [31, 37, 50, 75].

MIPS-X uses a five stage pipeline: (1) instruction fetch [IF], (2) register
fetch/instruction decode [RF], (3) execute [ALU], (4) memory access [MEM], and (5)
register write-back [WB]. An instruction fetch operation occurs on every pipeline cycle
and happens too early in the pipeline to support a selectable tracking cell. It is important
that the first-level instruction-cache access either be faster than the other frequently used
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Figure 3.6: Block diagram of MIPS-X with dynamic clocking and internal data cache.
functional operations or be tracked on every pipeline cycle. The first-level cache access

time (after self-timing the bit-line precharge and tag access) is less than several
frequently used operations. But, a first-level cache tracking cell is required to optimize
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the sequencing efficiency of the self-timed processor. The latency of the first-level cache
sets the minimum cycle time of the self-timed, MIPS-X pipeline. Tracking Cell A is
assumed to match the latency of the first-level caches and is called the minimum delay
tracking cell. The minimum-delay tracking cell does not require a select input since it
has the shortest delay of all the tracking cells.

The access time of this cache configuration, including tag-compare, bii-line
precharge, address drives/latches and data latches, is approximately 30 gate delays. A
gate delay is equivalent to an inverter delay with a fanout of four. Both first-level caches
are assumed to be 2KBytes and 8-way set associative to minimize their miss rates
(identical to MIPS-X). A copy-back first-level data cache organization with write
buffers is assumed, allowing store operations to occur in the minimum cycle time. If a
instruction fetch misses in the first-level cache, a select signal is driven to the dynamic
clock generator to indicate that an external memory cycle is required. The pipeline is
stalled and the clock stopped during the next cycle until the memory reference has
completed.

Register reads, instruction decode, and bypass register selection occurs during the
next stage in the pipeline sequencing. Like instruction fetches, instruction decoding and
operand fetches are required on every processor cycle. The register fetch, instruction
decode, and bypass register select operation were faster than a first-level cache access.
The time required to latch and drive the source data to the other functional units is
included in the operational delays of the tracked operations and is not considered as part
of the register select/fetch delay. Therefore these operations execute within the cycle
time set by the other pipeline functions.

The operation chosen to set the second most critical cycle time of the dynamic clock
generator was the add operation (specifically, an ALU addition driving through bypass
registers). Some form of addition is required on approximately every processor cycle.
Table 3.1 lists the operations requiring an addition and their expected frequency-of-use
[31, 37]. Some of these additions, i.e. PC increment, can be implemented with a faster
execution time than the other add operations. But the other PC address calculations
(branch address, jump address, and trap address) are multiplexed with the PC increment,
increasing their total latencies. A full 32-bit addition, excluding PC increment, is
required approximately 65% of the time.

Three factors lead to the choice of the add operation to set the second-fastest cycle
time: the frequency-of-use, the add delay relative to the instruction fetch delay
(approximately four gate delays longer), and the use of identical adder logic in both the
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PCU and ALU. The ALU add path was longer-than, or equal-to the other add
operations. Tracking Cell B is designed to match the critical delay path of an ALU add
operation. The ALU adder tracking cell delay equals approximately 34 gate delays. All
add operations except for PC increment cause the adder tracking cell to be selected. The
select input for the tracking cell is generated by the instruction decode circuitry during
the RF pipe stage (all selected adds occur during the ALU pipe stage).

Pipelined Functions Requiring

an Add Operation Frequency-of-use (%)
PC increment 100

Branch address calculation 15
(conditional and unconditional)

Memory reference address 30
calculation (load/store)

Arithmetic instructions 20

Total (excluding PC increment) 65

Table 3.1: List of operations requiring an add operation

The next slowest critical logic path is the compare-and-branch operation, which
occurs during the pipeline's execute stage. This operation is required for each conditional
branch instruction. The compare-and-branch operation uses the ALU adder to
accomplish the compare (equal-to, greater-than, or less-than) and based on the results,
selects the appropriate PC address for the next instruction fetch cycle. The total
compare-and-branch delay is approximately six gate delays longer than the add
operational delay. A branch instruction is approximately 15% of all executed
instructions.

Finally, a tracking cell is required to interface the Bus Interface Unit (BIU) to the
dynamic clock generator. This cell is utilized on each external data transfer which stalls
the pipeline. External cycles are required during I/O transfers, other non-cachable data
transfers (video memory), and on first-level cache misses. During an external data
transfer the dynamic clock stops during @2 and remains in @2 until a transfer complete
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signal is received by the Bus Interface Unit. We estimate (from detailed implementation
given in Chapter 5) that the clock startup time will increase the second-level cache access
time by less than 5%, assuming the processor and external cache are implemented in the
same technology. Some of this additional delay can be hidden by driving the completion
signal early relative to the data signals. At best, only half of this delay could be safely
masked by an early completion signal. But this may be unnecessary, since the frequency
of an external cycle is approximately 6% of all operations (caused by instruction and data
cache misses).

Chapter 5 gives detailed implementations of the tracking cells used in STRiP's
dynamic clock generator. The next section compares the performance of synchronous
MIPS-X implementation to a dynamically clocked implementation using the tracking
cells defined in this section.

3.3.2 Synchronous vs Self-Timed

The comparative performance of the synchronous and self-timed MIPS-X
implementations was evaluated using a variety of simulation and analytical data. IRSIM,
a switch level simulator, and SPICE, a non-linear circuit simulator, were used to
determine the processing latencies of each critical logic path. Previous results from
studies determining instruction mix and cache performance for RISC based systems were
combined to determine the frequency-of-use of each functional unit. We assumed the
design of each logical element is identical in both synchronous and self-timed
implementations, except for specific cases where the sequencing method effects the
design style (i.e. self-timed precharged buses versus phase precharge buses). The
memory systems are identical in size and complexity. The primary goal is to determine
the effectiveness of self-timing on an otherwise synchronous processor implementation.

Since the instruction set architecture for the synchronous and self-timed MIPS-X
implementation are equivalent, the conflict penalties incurred by the two machines are
considered to be equal. These penalties are caused by cache misses, load delays, miss
predicted branches, and other resource conflicts. To simplify our calculations, the
second-level cache is assumed to have a 100% hit ratio. This assumption has little effect
on the final comparison because of the projected second-level cache size (512KB -
2MB). Both machines have identical cycles-per-instruction (CPI) measures, resulting
from an equal number of conflict penalties per instruction.
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The main difference between the two machines is the period required, and used, to
sequence each operation through the pipeline. The synchronous system sequences the
pipeline at a constant rate, determined by the worst-case environment, silicon process,
and critical logic path. The self-timed system will attempt to adjust each cycle's period
to match the prevailing environmental conditions, silicon process, and pipeline
operations. To calculate a relative performance difference, independent of technology,
gate delays are used to represent the processing latencies of the critical-logic paths. It is
assumed that all logic functions are implemented in the same technology. The second-
level cache access time is normalized to the same gate delay measure used for the
processor. The analysis assumes a nominal operating environment (25°C and 5V), a
nominal process, and the ability to sort the synchronous processor to within 25% of the
available process performance (LSI Logic assumes a 50% process variance from nominal
to worst-case).

Table 3.2 list the frequency-of-use and processing latencies for the critical logic paths
of the MIPS-X processor. The processing latency used for the second-level cache access
assumes an external cache controller with external SRAMs and parity checking. An
average cycle time per instruction for both synchronous and self-timed implementations
is calculated with these numbers. The number of stall cycles caused by branch and load
penalties is assumed to be equivalent in both synchronous and self-timed systems,
affecting their performance similarly.

The average synchronous cycle time per instruction is calculated as follows:

Average Sync. Cycle Time

= worst-case logic path latency

+ second-level cache [access frequency * access time]
40 + (0.078 * (3 * 40))
49.4 gate delays

The second-level cache access time required three processor cycles since synchronous
system transfers require a discrete number of cycles. If the second-level cache access
could be accomplished in two cycles, the average synchronous cycle time would equal
46.2 gate delays, a 6.5% performance increase.
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Critical Operation Frequency-of-Use Processing Latency
(Gate Delays)

Instruction Fetch 100% 30

(first-level cache access)

Data Fetch (Load/Store, first-level 30% 30

cache access)

Add/Sub (arithmetic and 45% 34

Load/Store, Execute Unit operation)

Compare-and-Branch (branch 15% 40

instruction, PCU operation)

Combined internal cache miss 6% --

ratios (instruction and data)

Second-level cache references 130% * 6% = 1.8% 100

(combined zero- and first-level
cache miss ratios * % of references
‘per instruction)

Table 3.2: Frequency-of-use and processing latencies for the MIPS-X processor critical

lo

gic paths.

The average self-timed cycle time per instruction is calculated as follows:

Average Self-Timed Cycle Time

branch [access frequency * processing latency]
+ add [access frequency * processing latency]

+ first-level cache [access frequency * access time}

+

+ (0.078)(100)
= 37.1 gate delays

second-level cache [access frequency * access time]
[(0.15)(40) + (0.45)(34) + (1 - 0.15 - 0.45)(30)](1- 0.078)

Therefore, assuming that both synchronous and self-timed MIPS-X systems are
operated independent of worst-case process, temperature, and voltage, the self-timed
system will operate 25% faster than the synchronous system. This performance
advantage can be combined with the performance improvement provided by the self-
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timed design when operating at nominal temperature, voltage, and process. The
degradation factors for temperature, voltage, and process (provided in Chapter 2) can be
used to calculate the total performance difference between synchronous and self-timed
systems operating under nominal conditions:

tsync = KT * Ky * Kp * Kg * teif-timed

where

tsync = the average synchronous pipeline clock period
tself-timed = the average self-timed pipeline clock period
KT = temperature degradation factor

Ky = voltage degradation factor

Kp = process degradation factor

Kg = sequencing degradation factor

Therefore the total performance advantage of self-timed pipeline sequencing under
nominal operating conditions is:

t

SVNC

—SYIC o (K *Ky *Kp *Kq) - 1
teelf-timed (Kt * Ky * Kp * Ks)

(1.22*1,15*1.25*%1.25)-1
1.19 or 119%

Assuming perfect tracking of critical logic paths and no overhead in the dynamic
clock generation, a dynamically clocked MIPS-X processor will theoretically operate
more than twice as fast as an equivalent synchronous processor under nominal operating
conditions. In fact, this hold even if the dynamic clock generator overhead is as much as
10% (caused by the C-element and inaccurate tracking cells). Self-timing through
dynamic clocking provides a viable alternative to traditional synchronous operation by
extracting most of the available silicon performance from a given implementation. The
elimination of the external interface clock also allows efficient scalability as technologies
change.




Chapter 4

Improving Memory System Performance

In modern processors the single most important factor limiting performance is usually the
memory system. To optimize the performance of the processor, the memory system
must have low latency and a high bandwidth. Cost-per-bit is also a factor in determining
the practical memory system size and performance. This chapter describes an internal
memory system and aggressive prefetching technique which doubles the performance of
a traditional memory system structure without significantly increasing its cost or size.
First, trends and constraints of modern memory system design are discussed. Second, an
adaptive prefetching algorithm is described, called predictive prefetching, which uses a
history of references to predict future references. Next, small low-latency caches (< 256
bytes) using predictive prefetching are analyzed and compared with a traditional memory
hierarchy. Finally, the memory system structure used to support predictive prefetching is
described.

4.1 Modern Memory System Design

Obviously, reducing the average memory system access time requires access times
reductions to one or more levels in the memory hierarchy. The memory subsystem
closest to the processor has the largest effect on the average access time and is usually
constrained to work in a integer number of processor cycles. This first level in the
memory hierarchy is usually a first-level cache. Today's processors often contain
internal first-level caches whose sizes are determined by the available silicon area.
Cache studies show that the speed-size-miss ratio tradeoff for very small caches (less



Improving Memory System Performance 48

than 1K bytes) causes inefficient operation because of high miss-rates and total miss-
penalties. Therefore, processor and system designers make the first-level caches as large
as possible and use the fastest available RAMs. Modern microprocessors contain internal
first-level caches of at least 16K bytes in total size or external first-level caches as large
as 2M bytes.

Most processors are sequenced at a rate equivalent to the access time of the first-level
cache. This simplifies the cache access and reduces the complexity of information
control within the pipeline. The disadvantage of large first-level caches is that their
access times are greater than the optimum processing rates of the other pipelined
functional units. Therefore, one of the most common methods of decreasing a memory
system's average access time involves pipelining the first-level caches.

Pipelining the first-level caches can double their average throughput and cut their
effective access time in half. But cache pipelining adds complexity to the cache
structures and increases the pipeline depth of the processor. Increasing the pipeline depth
will increase the processing penalty for a miss-predicted branch instruction and data
conflicts following a load operation. If branch and load delay slots are scheduled by the
compiler, increasing the pipeline depth can increase the number of delay slots which
must be filled with useful instructions. Therefore, care must be taken when using multi--.
cycle or pipelined caches so that potential operational penalties do not offset the gains in
throughput.

A good example of a processor which uses pipelined first-level caches is the MIPS
R4000 microprocessor. The R4000 is binary code compatible to the MIPS R3000
microprocessor. The R4000 uses an eight-stage pipeline (3-cycle first-level caches)
while the R3000 uses a five-stage pipeline. Because the R4000 must be compatible with
the R3000 binary code, its branch penalty is three cycles and the number of load delay
slots is two. The R4000 branch and load CPI penalty is 0.42 cycles/instruction while the
R3000 branch and load CPI penalty is 0.11 cycles/instruction [55, 57). Assuming
identical size caches, identical branch prediction strategies, and identical pipeline
sequencing rates, the R3000 five stage pipeline can provide more performance than the
deeper R4000 pipeline (Note: the higher CPI penalty of the R4000 is offset by a 50%
reduction in cycle time). An ideal memory system would support the average access
time provided by pipelined caches without an increase in pipeline depth and CPL

As described in Chapter 2, there are studies that suggest methods of reducing the
effective memory system access time through the addition of queues, FIFOs, buffers, and
special memory structures. An alternate method for decreasing a memory system's
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average access time, without increasing the number of pipeline stages, involves adding
very small (less than 256 bytes), fully-addressable prefetch buffers to the memory
hierarchy, between the CPU and the first-level cache(s). Their location in the memory
hierarchy and their operational characteristics lead us to call these prefetch-buffers "zero-
level caches" or "LO caches". Figure 4.1 shows the location of the zero-level caches in
the memory hierarchy. We placed a zero-level cache in both data and instruction
reference paths to minimize resource conflicts. The zero-level caches are restricted in
size to minimize their access times (less than half that of the first-level caches) and to
keep the fully-associative configuration manageable. Therefore, a zero-level cache is
roughly 4% the size and has less than half the latency of a 8K byte, direct-mapped first-
level cache.

ﬁ’rmuor Compiex with Zero-Level Caches A

CPU MMU FPU
LO inst-Cache LO Data-Cache
1-16 cache blocks 1-16 cache blocks
L1 Inst-Cache L1 Data-Cache
8KB 8KB
Block size = 2-4W Block size = 2-4W

C pataln ) C AddessOout ) (  Data-Out )
T )

\_ J
Data Address
L2 Cache (unified) h
256KB-1MB, 64-256B blocks
Access time = 40ns J
Data Address

Main Memory )

16MB-512MB
Access time = 320ns Y,

Figure 4.1: Memory Hierarchy with Zero-Level Caches

As mentioned earlier, one problem with small caches is that their high miss ratios
more than offset their fast access times. Aggressive fetch and prefetch strategies can
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significantly reduce the miss ratios of small caches in the memory hierarchy. Most
prefetch algorithms are more effective at predicting future instruction references than
future data references. We have developed a hardware-driven prefetching algorithm and
a memory system organization which makes the use of zero-level instruction and data
caches efficient and practical. The following sections will describe how this prefetching
algorithm works, the hardware required, and the resulting performance relative to
traditional memory system structures.

4.2 Prefetching

When developing a prefetching algorithm a designer must determine the importance of
several key parameters and then set their optimum values. Some of these parameters
include: condition determining the object to be prefetched, condition determining when
the object is prefetched, size of the prefetched object, the prefetch depth into the memory
system, the prefetch priority as compared to a processor request, and the bandwidth
required to support the prefetch algorithm. We are interested in an adaptive prefetching
algorithm which provides efficient prefetching of both data and instructions. The
algorithm must be hardware-driven, providing efficient operation independent of the
application software. The most common hardware-driven prefetch strategies are
sequential-prefetch-always, fetch-on-fault, and tagged-sequential prefetching. The
following defines each of these strategies:

(1) Sequential-Prefetch-Always -- A fetch to the next level in the memory hierarchy is
initiated as a result of the processor reference to the cache, regardless of whether or
not a cache miss occurred. This prefetch strategy requires a significant amount of
memory sysiem bandwidth and can fill the cache with worthless data. To
accommodate the bandwidth requirements many designs set the interface size
between the cache and the next level in the memory hierarchy to greater than

a word.

(2) Fetch-On-Fault -- A fetch to the next level in the memory hierarchy is initiated on a
cache miss and retrieves more than one cache block of data (fetch size > block
size). The additional blocks or subblocks of fetched data are sequentially addressed
from the cache miss block address. This is probably the most common prefetch
strategy and is often assumed to be a part of the fetch strategy instead of
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prefetching. Most implementations of this prefetch strategy allow the processor to
continue execution before the prefetching is completed (like nbwrf described in

Chapter 2).

(3) Tagged-Sequential Prefetching -- A fetch to the next level in the memory hierarchy
is initiated on a processor request to a cache block which has been fetched but
never accessed by the processor. A prefetch also occurs on a cache miss since this
is considered the first access to that cache block. Therefore, tagged-sequential-
prefetch is a modification to the fetch-on-fault prefetching strategy, allowing
prefetches to occur on initial block accesses as well as on cache misses. The
address of the prefetched cache block is the next sequential block address after the
block that was accessed. This is the most efficient of the three prefetch strategies
but requires a more complex control structure. A zero-level cache implementation
using this strategy must be dual-ported to allow simultaneous read and write of the
cache's tag and data RAMs.

Of all the methods previously studied, tagged-sequential prefetching provides a
reasonable reduction in instruction-cache miss rates while allowing for a manageable and
efficient implementation structure. But none of the hardware-driven prefetch strategies
surveyed significantly reduce the miss rates for small data caches. The fetch and prefetch
strategies studied still require a memory system structure with large caches closest to the
CPU. The resulting access times are not optimum for the target processing rate.

Extensive studies have been performed to understand the access patterns for data and
instruction references relative to workload and processor type [8, 29, 66, 90]. By
understanding the typical access patterns of a processor we created an adaptive
prefetching structure, called predictive prefetching, which significantly increases the
accuracy of the prefetch. An improved prefetch accuracy minimizes the amount of
unused prefetched data, increases the caches hit rate, and reduces the required memory
system bandwidth. Predictive prefetching uses a history of processor reference patterns
to predict future references. The reference history is stored in the first-level cache tags
and updated after every processor reference. The address used during each first-level
cache reference is stored in the tags of the previous reference, providing prefetch
addressing when each reference is reused. Predicted references are prefetched from the
first-level cache (designed for high bandwidth) to the zero-level cache (designed for low
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latency). The use of zero-level caches and predictive prefetching provides a memory
system with average access times less than half that of a traditional memory hierarchy.

4.2.1 Predictive Prefetching

Predictive prefetching is similar in concept to branch prediction using a branch-target-
buffer. A branch-target-buffer stores a history of branch addresses to provide a
prediction method for future branch addresses. Hardware branch prediction accuracies
have been studied and are well understood [65, 88]. If the hit-rate for correct branch-
address prediction is high enough, the average branch penalty is reduced. Johnson [50]
suggested the use of the first-level cache tags as a storage medium for the branch-target-
buffer. By using the first-level cache tags to store branch prediction information,
Johnson was able to significantly increase the amount of branch prediction data,
increasing the branch prediction accuracy with a small increase to the total cache size.

We propose an extension to the branch-target-buffer structure used by Johnson to
help in the prefetching of both data and instruction references. The processor reference
patterns are recorded such that for each referenced address, the temporally next
referenced address is stored. The stored reference patterns are addressed so that
prefetching information is provided and used before the processor can reference
subsequent addresses. The predictive prefetching algorithm studied in our research
records the instruction and data reference patterns separately. Therefore, past instruction
reference patterns are used to predict future instruction references and past data reference
patterns are used to predict future data references.

Our predictive prefetching algorithm, like Johnson's branch-target-buffer, uses the
first-level cache tags to store the reference history of the system. Each time a reference
is reused, the history of the reference which followed the present reference is used to
predict the next processor reference. The amount of active reference history is limited by
the number of first-level cache blccks and their lifetime in the cache. This factor thus
bounds the effectiveness of the predictive prefetching algorithm. We will show that
typical on-chip first-level caches (= 8K byte) provide enough tag entries (thus reference
history) to support accurate data and instruction prefetching.

Predictive prefetching differs from Johnson's method by using the stored reference
history for prefetching all references, not just branch address prediction. This decouples
the prefetch mechanism from the instruction decoder. But, if desired, the stored
instruction reference history can also support branch prediction, as Johnson proposed.
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Another difference is that predictive prefetching occurs for both instruction and data
references. Each cache block stores the address (index address) of the temporally next
addressed cache block. These addresses are then used by the prefetch unit to prefetch
data from the first-level cache to the zero-level cache. Each prefetched zero-level cache
block is tagged so that the next prefetch will not occur until the prefetched data block is
referenced by the processor. This method of prefetching will be referred to as tagged-
predictive prefetching. If a prefetch address is not stored for any given cache block, the
next sequential address is used for prefetching. Since a sequential address is a full 32-bit
address, not a cache-block address, it can be used to prefetch past the first-level cache.
This increases the memory system efficiency during cold-starts.

The main goal of predictive prefetching is to provide a simple and effective means of
prefetching processor references from the first-level caches to the zero-level caches.
With the proper fetch size, block size, interface size, and cache size, predictive
prefetching allows a zero-level cache to have a hit ratio similar to a first-level cache but
with half the access time. Also, the use of full addresses on sequentially-predicted
prefetch addresses enhances the entire memory system effectiveness. The following
section gives details of our predictive-prefetching algorithm and its hardware
implementation.

4.2.2 Predictive Prefetching Protocol

As mentioned in the previous section, our predictive prefetching algorithm uses the first-
level cache tags to store the reference history of the processor. This information is then
used to prefetch both data and instruction addresses into the zero-level caches. The
reference history is stored as first-level cache index addresses, minimizing the number of
address bits per cache block. A 8K-byte first-level cache with four-words-per-block has
an index address of nine bits. Therefore, each first-level cache block contains a tag entry
for the prefetch index address (P1A), which corresponds to the cache reference following
the reference of that block, and a valid prefetch address (VPA) bit.

The reference history of the processor is updated on each access to the first-level
cache. Each first-level cache access is monitored to determine whether it was caused by
a prefetch request or a zero-level cache miss. This allows the exact reference pattern of
the processor to be saved. Because the prefetch addresses are stored and accessed during
the same cycle, the memory cells used to store the reference history must be dual-ported.
Because of this, the size and control of the reference history storage is different than the
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other first-level cache tag storage. If a prefetch address has not bern stored for a given
cache block, the ne».t scquential address is used as the prefetch address.

As a first-level cache block is fetched or prefetched, the prefetch address stored with
that block is also transferred to the zero-level cache. The zero-level cache contains tag
storage for the prefetch information. As with the first-level cache prefetch storage, the
zero-level cache must be dual-ported to support simultaneous fetch and update cycles.
This dual-porting slightly increases the complexity of the zero-level cache.

Because the zero-level cache is approximately twice as fast as the first-level cache,
the processor is cycling at approximately twice the access rate of the first-level cache.
Since a prefetch request occurs in parallel with normal processor cycling, each prefetch
operation requires two cycles. If a miss occurs in the zero-level cache during the first
cycle of a prefetch operation, that operation is aborted (unless the miss address matches
the prefetch address). Otherwise, the prefetch can complete without interruption. This
operating mode minimizes the stall time required to support a zero-level cache miss. It
also reduces the number of prefetched addresses which are unreferenced.

The following describes the key characteristics of predictive prefetching and the
memory system required to support it:

1. A first-level cache reference is caused by a zero-level cache miss or a zero-level
cache prefetch request.

2. Each zero-level cache miss is immediately followed by a zero-level cache prefetch
request.

3. The index address of each first-level cache reference is stored in the PIA entry for
one of the two previous first-level cache references. The storage location of each
reference address is based on whether it and the previous first-level cache reference
was caused by a prefetch request or a zero-level cache miss. Each first-level cache
reference (index address) is stored in the tag of the previous reference except when a
prefetch reference is followed by a reference caused by a zero-level cache miss. In
this case the miss reference (index address) overwrites the entry stored for the
previous prefetch reference. This provides an accurate history of the actual processor
reference pattern, avoiding reference history storage of unused prefetched references.
The following defines the storage procedure for each combination of references:

a. If the present first-level cache reference is caused by a zero-level cache miss and
the previous first-level cache reference was caused by a zero-level cache miss,
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than the index address of the present reference is stored in the prefetch tag of the

previous reference.

b. If the present first-level cache reference is caused by a zero-level cache miss and
the previous first-level cache reference was caused by a zero-level cache prefetch
request, then the index address of the present reference is stored in the prefetch
tag of the reference before the previous reference (two references back from the

present reference).

c. If the present first-level cache reference is caused by a zero-level cache prefetch
request, then the index address of the present reference is stored in the prefetch
tag of the previous reference, independent of the cause of the previous reference.

Table 4.1 outlines the prefetch index address storage patterns based on the order of
reference types. Therefore, each first-level cache tag address must be temporarily
latched (based on the type of reference) for use during the next two first-level cache
references. The type of reference (prefetch or miss) must be communicated to the
first-level cache controller. Dual-porting of the PIA RAM cells helped- to simplify
the logical implementation of this protocol. Finally, the VPA bit is set valid on each

PIA update.

Present L1 Cache Ref.
(n)

Previous L1 Cache Ref.
(n-1)

Storage Location of Present
Index Address

L0 Cache miss

L0 cache miss

PIA of reference (n-1)

L0 cache miss

L0 cache prefeich request

PIA of reference (n-2)

L0 cache prefetch request

L0 cache miss

PIA of reference (n-1)

L0 cache prefetch request

L0 cache prefetch request

PIA of reference (n-1)

Table 4.1: PIA storage based on reference types and their ordering.

4. A prefetch address tag is invalidated (VPA is set invalid) after a first-level cache
miss. A first-level cache miss only occurs during full 32-bit address references (zero-
level cache misses and sequential-address prefetching). The PIA is not updated and
VPA is left invalid until the next first-level cache reference. This allows full-address
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sequential prefetching without storing full addresses in the prefetch tags. Full address
sequential prefetching supports prefetching past the first-level cache during cold-start
conditions.

5. A prefetch request is terminated if a zero-level cache miss occurs before the prefetch
request has completed. If the zero-level cache miss address equals the overlapping
prefetch request address, the prefetch request is allowed to complete and the data is
forwarded to the target register (instruction or data). A prefetch address comparator
is required to support this operation.

6. The zero-level cache must also contain PIA and VPA bits for each cache block entry.
This information is transferred at the same time data is transferred from the first-level
cache. These entries along with a prefetch indicator (PI) bit facilitate tagged
prefetching.

7. If a previously unreferenced zero-level cache block is accessed and the its PIA is
valid, the PIA is used as the prefetch address for the first-level cache. For an invalid
PIA, the PC is incremented by one cache block and used as the prefetch address. A
previously referenced zero-level cache block will not initiate a prefetch request on
subsequent processor references to that block.

8. All cache entries are invalid during power-on reset or a cache flush operation.

Figures 4.2 and 4.3 show the zero-level and first-level cache tag entries assuming a
8K-byte, direct mapped, first-level cache and a fully-associative zero-level cache, both
with 4-word blocks.

VPA PiA12-PIA4

|

Prefetch Index Address

A31-A13 j

Tag Address

Valid Prefetch Address Bit Valid Tag Address Bit

Dirty Bit for Copy-Back Cache

Figure 4.2: First-Level cache tag structure to support predictive prefetching.
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| |

Prefetch Index Address Tag Address

Valid Prefetch Address Bit Valid Tag Address Bit

Prefetch Indicator

Figure 4.3: Zero-Level cache tag structure to support predictive prefetching

The tagged-predictive-prefetching algorithm is meant to be fully hardware controlled.
Assuming an 8K-byte first-level cache and 4-words per block, the increase in first-level
cache storage required to save the reference history is approximately 7%. We must
determine the effectiveness of tagged-predictive-prefetching and zero-level caches
compared to other common memory system implementations. This analysis is performed
in the following section.

4.2.3  Analysis Assumptions

The baseline system parameters were chosen to approximate the technology and physical
structure for the present generation microprocessor systems. The baseline design is
influenced by the baseline configuration used by Jouppi [53] in his study of small fully-
associative caches and prefetch buffers. The target technologies are a 0.8um CMOS
process [49] and a 0.8um BiCMOS process [49]. These technologies can yield
sequencing rates of 100-200MHz. This implies a average memory system access time of
less than 10nsec.

The CPU, floating point unit, memory management unit, and first-level instruction
and data caches are assumed to reside on the same chip. This level of integration is
common in modern microprocessors (Intel i860, Intel i486, Motorola 68040, MIPS
R4000, etc.). Figure 4.4 shows the baseline configuration for which all results are
compared. Figure 4.1 shows the proposed memory system configuration with zero-level
caches. Split first-level instruction and data caches are direct-mapped, yielding the
fastest effective access time [40]. The data cache is a copy-back, write-allocate design,
while the instruction cache assumes writes are prohibited to instruction storage. The size
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of each cache is 8K-bytes. The MIPS R4000 contained similar caches built in similar
CMOS technologies. Their resulting access times of 20nsec are insufficient to support
the target sequencing rates. The R4000 pipelines internal caches, providing a higher
sequencing rate but resulting in a higher CPI rating. Our goal is to avoid increasing the
CPI rating while supporting the target sequencing rate.

(Procsssor Complex

CPU MMU FPU

L1 inst-Cache L1 Data-Cache
8KB 8KB
Block size = 2-4W Block size = 2-4W
(_ Data-In ) ( Address-Out ) ( Data-Out )
)

\' y

Data Address
( L2 Cache (unified)
256KB-1MB, 64-256B blocks
\_ Access time = 40ns
Data Address
( Main Memory
16MB-512MB
\_ Access time = 320ns

Figure 4.4: Baseline Design

The internal cache block and fetch sizes were assumed to be equal. There are several
aspects of the targeted system which dictated the block and fetch size: Hennessy's and
Przybylski's studies {37, 79] showing very small miss-rate differences between caches
with block sizes of four to sixteen words, the external data interface size, the data transfer
size between zero-level caches and the first-level caches, and the maximum size and the
maximum number of entries allowed in the zero-level caches. Figure 4.5 shows the
abstract tradeoff of block size versus miss rate, memory-access time and memory-
transfer time. Figure 4.6 shows the specific numbers generated from Hennessy's study.
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Figure 4.5: Block size versus miss penalty and miss rate [37].
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Figure 4.6: (a) Miss rate and (b) average access time versus block size [37].
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Large block sizes can reduce cold start or compulsory misses, increase collision or
conflict misses, and increase the cache miss penalty. The third type of cache misses,
capacity misses, are unaffected by block size. Considering all these factors, a block size
range of two to four words seems to be optimal.

The second-level cache is an unified, direct mapped cache. Its size is in the range of
256K to 1024K bytes with a block size of 16 to 64 words. Because of the size of the
second-level cache in comparison to the number of unique addresses accessed by the
targeted applications, relatively little performance are lost because of second-level cache
misses. The second-level cache uses a copy-back, write-allocate write replacement
protocol and is addressed by the processor via real addresses. This makes cache
coherency possible through the use of a snoopy interface [8, 19, 37, 92].

4.2.4 Analysis Technique

The primary tools for the study of memory systems are analytical models and
simulations. With the target memory system established (resulting from the targeted
average access time and silicon area restrictions of the target technologies) a trace driven
simulator was written in C to investigate the effectiveness of the memory system
structure. The design space was restricted because of practical implementation factors.
The traces used during our evaluation were derived from user reference address traces of
six programs running on a R2000 processor. These traces were four RISC machine
traces used by Przybylski [78] in his study of cache and memory hierarchy design. They
were obtained by using a program, called PIXIE, to add code to each basic block to emit
the effective address of each load or store and the start of each basic block.

The applications used to generate the traces were chosen as representative of the
reference stream activity on personal engineering workstations. The programs consisted
of a edit session (emacs), a C compile (ccom), a text search (grep and egrep), a text
formatting session (troff), a MOS switch-level simulator (irsim), and a program that
analyzes address traces (analyzer). Seven uniprocess traces were generated by capturing
one million references following the start point for each program. The RISC traces were
synthesized by multiplexing between the selected uniprocess traces so that the
appropriate context switch intervals were created. Each trace file was organized to
provide approximately 600,000 references for a warm-start initialization of the caches
and ! million references for the actual statistical analysis. Figure 4.7 shows the unique
reference activity for the resulting four RISC traces.
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Figure 4.7: Unique references as a function of time: R2000 traces {78].

The number of unique addresses accessed by the resuiting context-switched trace files
is relatively small but adequate for our analysis of small internal caches. While longer
traces [14] of larger programs exhibit significantly different second-level cache miss
rates, the use of longer traces add very little to the analysis of internal memory system.

The zero-level cache size was varied from one block to 16 blocks and was not
allowed to exceed 256 bytes. The zero- and first-level cache block, fetch, and interface
sizes were assumed to be equal. A bypass path allows data to be transferred from the
first-level caches to both the CPU and zero-level caches during miss cycles. The external
interface is assumed to be two words (64-bits), matching other modern processor
interface capacities. The block size was varied between two and four words (an eight
word block size was tried with the maximum zero-level cache size to determine its
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effectiveness). Tagged-sequential prefetching, tagged-predictive prefetching, a zero-
level cache operated without prefetching, and a memory system without a zero-level
cache were simulated. The following section describes the results from the trace

simulation.
4.2.5 Simulation Results

First we investigated the effectiveness of a zero-level instruction cache with and
without prefetching. Figure 4.8 compares the miss ratios of a zero-level instruction
cache with storage capacities of 1 to 16 blocks and blocks sizes of two and four words.
Tagged-sequential prefetching, tagged-predictive prefetching, and a zero-level cache
without prefetching were simulated. Independent of the block size, both prefetching
algorithms yield a near minimum miss rate with a zero-level instruction cache size of
three blocks. This result is attributed to the average basic-block size of the trace files and
the room allotted the prefetcher to store prefetched instructions without destroying useful
references. Smith [96] has found that the average basic-block size for most RISC
applications is seven instructions, with a mean size of four instructions.

The miss ratios for predictive prefetching were three to four times smaller then the
miss ratios for sequential prefetching. The miss ratio for tagged-predictive prefetching
with a zero-level instruction cache size of three blocks was 2.5%. In all cases the miss
ratio for no prefetching proved to be inadequate, never falling below 25%. A eight-word
cache block was tried, resulting in no improvement over the four-word cache block. A
four-word cache block always provide a better miss ratio than a two-word cache block
and increased the first-level cache transfer bandwidth. The higher bandwidth provided
by the four-word block and interface size allowed the prefetcher to stay ahead of the
processor request.

The average instruction access time for the memory hierarchy, with and without the
zero-level instruction cache, is shown in Figure 4.9. This chart shows the memory
system access times normalized to the first-level cache access time, which is one cycle.
With tagged-predictive prefetching and a zero-level instruction cache size of three
blocks, the average access time is half that of a traditional memory hierarchy without a
zero-level cache. There is approximately a 10% difference in average access times when
comparing the two prefetching strategies. This illustrates that after a certain point,
significant reductions in the miss ratio yield only marginal reductions in average access
times.
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Figure 4.8: Zero-level instruction cache miss ratios.

A predictive prefetching strategy for instruction references will cost more in
silicon area than a sequential prefetching design because of the required reference-history
storage. But, because the instruction reference history is stored in the prefetch address
tag RAM, this information can also be used as a branch-target-buffer for branch
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64
prediction. A comparator is required to guarantee that the predicted address matches the
actual requested branch address.

branch prediction is required.

The use of the instruction reference history for
instruction prefetching and branch prediction minimizes the total hardware cost when
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Figure 4.9: Instruction reference average access times.
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Another aspect of using a zero-level instruction cache and tagged-predictive
prefetching is the factor-for-unutilized-prefetches or FUP. This prefetch parameter refers
to the percentage of prefetched cache blocks never accessed by the CPU. The higher the
FUP, the less efficient the prefetch algorithm. This unit of measure gives a good
indication of the amount of first-level cache bandwidth wasted by the prefetch algorithm.
Figure 4.10 shows the FUP for the zero-level instruction cache for both tagged-sequential
prefetching and tagged-predictive prefetching. The graph shows that less than 8% of the
blocks prefetched using predictive prefetching were never accessed by the CPU (with a
zero-level cache size greater than three blocks). Sequential prefetching never provided a
FUP of less than 22%.
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Figure 4.10: Factor-for-Unutilized-Prefetches (FUP) for zero-level instruction caches.

Therefore, tagged-predictive prefetching provides an efficient hardware driven
prefetch method for reducing the miss rate of zero-level instruction caches. Our
measurements show that approximately 70% of the available first-level cache bandwidth
was required to support the use of a zero-level cache with tagged-predictive prefetching.
The resulting average-access time for instruction references was 1.1 times the zero-level
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caches access time and half the access time of a traditional (non-pipelined) memory
system.

For the data reference stream, predictive prefetching proved to be more effective than
the other fetch protocols. Figure 4.11 compares the miss ratios for the zero-level data
cache structures studied. A miss ratio of 12.75% was observed for a 16 block, zero-level
data cache using four-word blocks and tagged-predictive prefetching. This was half the
miss ratio of the same size cache using tagged-sequential prefetching. The block size had
more of an effect on the miss ratio than was observed for the instruction references. The
miss ratios for the zero-level cache with a two-word block were up to 60% greater than
when using a four-word block. A eight-word block was simulated with a zero-level
cache size of 256 bytes (maximum allowable size) and tagged-predictive prefetching.
The miss ratio when using a eight-word block was 13.1%, slightly greater than for a
four-word block.

Figure 4.12 illustrates how effective a zero-level data cache with predictive
prefetching is in reducing the average access times of the data fetches. Tagged-
predictive prefetching requires approximately half the average access time of the
traditional memory system. Figure 4.13 shows the FUP for the data memory hierarchy
when using tagged-sequential prefetching, tagged-predictive prefetching, and tagged-
predictive prefetching only on read references. The data prefetch efficiency when using
predictive prefetching for data read and write cycles proved to be the best, although
significantly less than that achieved for the instruction stream. But the predictive
prefetch efficiency was sufficient to support the data reference frequency of the
simulated traces. The memory performance for data references using the zero-level data
cache and tagged-predictive prefetching is twice that of the memory system without these
enhancements.

Figure 4.14 combines the results of the instruction and data simulations to yield a
total memory system CPI. This data was generated assuming that both the instruction
and data zero-level caches were the same size and used the same fetch algorithm. The
results show that with zero-level caches added to the memory hierarchy using tagged-
predictive prefetching, the performance of the memory system can be doubled. Actual
implementations of zero-level caching would probably use different sizes for the
instruction and data caches. A four-block zero-level instruction cache and a 16-block
zero-level data cache, both having a block size of four words, provides an efficient
implementation with minimum hardware cost.



Improving Memory System Performance

Miss Rate
0.8500

0.8000 -t~

~ —{@—— Pred., 4W Bik
0.7500 %

\ ————a—— Seq., 4W Blk
0.7000 \\\ ~\ ¥ ———e—— No Pref., 4W Bk

\ \

\ N \\
0.6500 1\ T et WK

\\\\ \ \\\‘ -——4——-— Seq., 2W Bk
\‘ \.\\

0.6000 \\\ \ AN -—— 4~~~ NoPref., 2W Blk
0.5500 \ -

WA
0.5000 R

0.4500

0.4000 -

0.3500

0.3000

0.2500

0.2000

0.1500

0.1000

0.0500

) } { It ] |

0.0000 f f f ; 1 1 1 i !
1 2 3 4 6 8 10 12 14 16

Cache Size (Blocks)

Figure 4.11: Zero-level data cache miss ratios.
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Figure 4.13: Factor-for-Unutilized-Prefetches (FUP) for zero-level data caches.

We can compare these results with a similar memory hierarchy using pipelined first-
level caches, which also reduces the cycle time of the memory system. The MIPS R4000
uses this type of cache structure. When compared to a non-pipelined memory system,
both zero-level caching and pipelined caches provide approximately twice the memory
system CPI performance (0.6 versus 1.2). But pipeline caches increase the number of
pipe stages, increasing the number of load and branch delay slots. The CPI load and
branch penalty for the R4000 is 0.42, while the CPI load and branch penalty for the
R3000 is 0.11. Therefore, a traditional five-stage RISC processor using zero-level
caching and predictive prefetching will outperform a eight-stage RISC processor using
pipelined first-level caches by approximately 20% (assuming equal cycle times and a
memory system CPI of 1.2 for both configurations).
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4.3 Support Hardware

Prefetching places special requirements on the structure and operation of the memory
system. This section describes the hardware structures used in the internal memory
system to support tagged-predictive prefetching. First, the zero-level cache structures
and their operation are discussed. Next, a description of the first-level cache structure
used in our implementation is given. Finally, an evaluation of the internal cache access
times is provided. The signal naming convention used throughout this section is given in

Appendix B.
4.3.1 Zero-Level Caches

As previously described, zero-level caches are small fully-associative caches placed
between the CPU and the first-level caches. Their design was driven by the fetch and
prefetch requirements of the instruction stream of the processor. Zero-level caches are
unique in that they simultaneously support a processor read reference and a prefetch
update operation. Since instruction fetches occur 100% of the time, dual-porting is used
to support the bandwidth required by these parallel operations. Both data and tag RAMs
of the zero-level cache must be dual-ported. Therefore, zero-level caches are designed to
operate like a fully-addressable prefetch buffer and support tagged-predictive
prefetching.

Zero-level caches are fully-associative, minimizing the number of cache entries
required for a given miss rate. By limiting their size to a maximum of 16 cache blocks,
their complexity and access time are minimized. The replacement algorithm also varies
with cache size to reduce complexity. A LRU algorithm is used with cache sizes less
than or equal to four blocks and a random replacement algorithm is used for larger
caches. It is also important to structure the interfaces between the zero-level and first-
level caches to support the high bandwidth required by the prefetch algorithm and the
improved execution rate of the CPU. Therefore, the zero-level and first-level cache
block, fetch, and data interface sizes are equal, optimizing their block transfer rates.
Finally, to simplify cache coherency and optimize write performance, the zero-level data
cache uses a write-through policy with write-buffers.

Figure 4.15 gives a block diagram of the zero-level instruction cache (the data cache
has a similar configuration with the Program Counter Unit, Instruction Prefetch Unit, and
Instruction Register replaced by the Memory Address Register, Data Prefetch Unit, and
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Memory Data Register, respectively). The zero-level caches are made up of two units,
the Tag Unit and the Data Unit. The Tag Unit provides cache hit/miss indication signals,
tag prefetch control signals, and select signals for the Data Unit. A content-addressable
memory (CAM) is used for the tag storage and a tag-access tracking cell is used to
provide self-timed control. Figure 4.16 shows how the tag storage cells are constructed
and Figure 4.17 shows the tag tracking cell.
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Figure 4.15: Zero-Level Instruction Cache block diagram.
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The Data Unit provides cache data storage, tagged prefetched address storage, and
select control signals. To support simultaneous read/write operations, the Data Unit
storage cells are dual-ported RAMSs. If the prefetch request matches the CPU reference
request, the data is also bypassed to the target CPU register. Figure 4.18 gives the basic
Data Unit RAM cell structure. A bitline-precharge tracking cell is also required,
providing self-timed signalling for read-bitline precharging. This optimizes cache read
performance and isolates the cache's operation from the clock duty cycle. Figure 4.19
shows the structure of the bitline-precharge tracking cell.
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number
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Figure 4.19: Zero-level cache bit-line precharge tracking cell.

4.3.2 First-Level Caches

To provide the instruction and data bandwidth required by a RISC processor operating at
greater than 100MHz, internal first-level instruction and data caches are employed. Their
on-chip location decreases their access time (no chip boundaries) and allows for a wide
data path (interface size equals block size). Both factors are important to support the
prefetching algorithm required for effective operaiion of the zero-level caches. To



Improving Memory System Performance 76

minimize the first-level cache miss rate they are built as large as the CMOS technology
will aliow (assumed to be 8K bytes for instruction and 8K bytes for data). The first-level
caches are also assumed to be direct-mapped, providing the simplest and fastest cache
array. Figure 4.20 gives a block diagram of the first-level cache array.

The first-level cache address is driven from the Prefetch Unit. The Tag and Data
RAMs are constructed using single-port, six-transistor fully static RAM cells. During a
read operaticn the bitlines are precharged at the beginning of the cycle by a self-timed
precharge-control circuit similar to the one used by the zero-level caches. Reads to the
first-level cache can be caused by: a zero-level cache miss, a prefetch request from the
Prefetch Unit, or a snoop operation to a dirty cache block (data cache only). First-level
cache write request occur during a first-level cache miss operation or a write requests
from the processor. The first-level instruction cache requires no write policy, since
during normal operation, writes cannot occur to cachable instruction memory. The first-
level data cache uses a Copyback-Write-Allocated (CBWA) write policy to provide
maximum efficiency for data operations.

Tag Data Pref.
RAM RAM Addr.
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Address 7+
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19 1 block 10
{5 Comparator
v v
Hit/Miss Data Prefetch Addr. &
VPA bit

Figure 4.20: First-level cache block diagram.
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Figure 4.21 is a block diagram of the first-level cache Prefetch Address RAM array.
This RAM array stores the reference history of the processor, providing a means of
predicting future references. It is dual-ported to allow the updating of a prefetch address
while another is being read. This dual-porting is required since the block being
referenced is never the block requiring a PIA update and prefetching utilizes 70% of the
first-level cache bandwidth (instruction stream). The remaining 30% would not provide
adequate bandwidth for the updates. Single-rail sensing (ratioed inverter) is used on each
of the differential bitlines (similar to the structure used in the register file array),
simplifying the sense amp and providing true and complement signals to the zero-level
cache. Because the other cache tag bits have an additional comparator in their path, the
speed of dual-rail sensing was not required. The read bitlines are precharged by the same

control signal used in the data array.
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Figure 4.21: First-level cache prefetch address RAM array.

Figure 4.22 is an example timing diagram showing the control signal operation for
the prefetch address RAM, illustrating the update protocol. Note that the index address
for a first-level cache prefetch access is stored based on the cause of the next access.
The present first-level cache prefetch address is stored only if the next first-level cache
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access is another prefetch access. Therefore, a prefetch access is stored in the cache
block selected by the previous cache access only if the next access is a prefetch access. If
the next first-level cache access is caused by a zero-level cache miss, then the index
address of that access is stored, instead of the previous prefetch address. This prefetch-
index address storing protocol and the use of tagged prefetching allows the CPU's access
patterns to be stored precisely. This method of storing the CPU's reference history also
allows the information to be used for branch prediction.
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CMO = Zero-Level Cache Miss Cycle PF2 = Second Cycle in Prefetch Operation

Figure 4.22: Timing diagram for prefetch address tag RAM. -

The instruction and data streams are handled independently. The data stream is
unique in that it contains both read and write references. It was found that handling data
read and write references identically minimized the zero-ievel cache miss rate, increased
the prefetch efficiency, and minimized the average data memory access time. The
additional tag bits required to support tagged-predictive prefetching increased the number
of bits in the instruction and data first-level cache by 7% (over a simple direct-mapped
8K-byte cache with a block size of four words). The analysis in Section 4.2 shows that
the performance advantages provided by predictive prefetching and the fact that the same
reference history can be used for branch prediction justifies the 7% increase in cache

storage.
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4.3.3 Access Time Evaluation

To determine if a zero-level cache containing 16 blocks (4W/BIKk) is significantly faster
than the target first-level cache (direct-mapped, 8K bytes), a general-purpose circuit
simulation program called SPICE was used to analyze the zero-level caches access time.
SPICE allowed the zero-level cache to be model as depicted in Figure 4.15. The zero-
level cache SPICE model included; (1) the address latches and tri-state drivers in the PC-
Unit, (2) the zero-level cache tag unit, data unit, and word-line control logic, and (3) the
Instruction Register. The loading of all signals was set to match actual circuit conditions.
The CMOS process models used were a 2.0um model based on the MOSIS CMOS
process, and a 0.8um model provided by Mark Johnson [49]. Appendix C gives the
parameters of all technology models used during our analysis.

All circuit delays will be measured in gate-delays. The gate delay of a silicon
process is the delay of an inverter with a fanout of four. This unit of measure allows the
process to be nomalized out of the circuit delay specification. A gate-delay in the 2um
MOSIS process is 0.9ns and in the 0.8um process is 0.45ns under nominal operating
conditions. We estimate that a direct mapped 8K byte internal cache subsystem has an
access time of 35-40 gate delays, based on the performance of caches in processors built
by IBM, MIPS, and Intel.

Table 4.2 provides a list of serial logic elements which make up the critical logic path
used to model the zero-level cache reference delay. Table 4.3 list each functional unit in
the zero-level cache reference path and the gate delays measured from the SPICE
simulation. ~ All simulations were performed assuming nominal process and
environmental conditions (5V and 25°C). The logic path delay (measured in gate delays)
is measured from the rising edge of the PC Unit control signal to the falling edge of
instruction register output. The total delay for a zero-level cache access was
approximately 14.5 gate delays. This is less than half the number of gate delays required
for a first-level cache access. It is also less than the number of gate delays required for
an add operation (18 gate delays) and a compare-and-branch operation (24 gate delays).
In the 0.8um CMOS process the zero-level cache access time was 7.5ns.
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Functional Units | Internal Logic Elements in Reference Path
PC Unit Inverter
Latch
Tri-state driver (including four additional tri-state driver loads)
Tag Unit (CAM) | CAM cell (address signal loaded by 16 CAM cells)

CAM bit-line (bit-line loaded by 28 CAM cells with only one
cell active)
TagDone sense-amp (ratioed inverter)

Control logic for
self-timing and data

NAND
NAND

selection qualified clock word-line driver (NAND + 4x inverter)
Data Unit (RAM) | RAM cell (word-line loaded by 128 RAM cells)
RAM bit-line (bit-line loaded by 16 RAM cells with only one
cell active)
4-1 MUX minimum size pass transistor (with three pass transistor loads) +

ratioed inverter

Instruction Register

minimum size pass transistor + inverter

Table 4.2: Logic elements in zero-level cache reference path

Functional Units | Logic delay (gate delaxs)
PC Unit 3
Tag Unit (CAM) 4
Word-Line Control 4
Data Unit (RAM) 2
Instruction Register 1.5
Total 14.5

Table 4.3: Functional Unit gate-delays for zero-level cache reference path.

4.4

Summary

This study shows that the performance of a traditional RISC processor memory
system is improved by 100% through the use of small fully-associative caches, called
zero-level caches, and a simple hardware controlled prefetching algorithm, called tagged-
predictive prefetching. Zero-level caches contain less than 16 cache blocks, yielding
access times half that of an internal 8K byte, direct-mapped, first-level cache.

To
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minimize the miss ratio of these small caches, an aggressive and efficient prefetch
algorithm was required. Through the use of tagged-predictive prefetching, the miss ratio
of small data and instruction caches can significantly be reduced. For a instruction cache
size of 48 bytes (three cache blocks) a miss ratio of 2.5% was achieved. A data cache
size of 256 bytes (16 cache blocks) yielded a miss ratio of 12.75% when predictive
prefetching was used. Zero-level caches and predictive prefetching halved the memory
system cycle time without pipelining the first-level caches and without incurring the
increased branch and load penalties that accompany increased pipeline depth. By not
pipelining the memory system, the overhead caused by increased branch and load
penalties is avoided. A RISC processor using zero-level caching and predictive
prefetching is 20% faster than a RISC processor using pipelined first-level caches (all
other factors being equal).

The predictive prefetching algorithm studied in our research recorded the instruction
and data reference patterns separately. Therefore, past instruction reference patterns are
used to predict future instruction references and past data reference patterns are used to
predict future data references patterns. Prefetching of data addresses based on instruction
references, and the recording structure to accomplish this, was not studied but may
provide an alternative to the algorithm described in this paper.




Chapter 5

STRiP Implementation

To determine the feasibility of dynamic clocking we applied the design techniques and
structures described in the previous chapters to a RISC architecture. The result was a
self-timed RISC processor called STRiP. STRiP's architecture is based on, and binary
code compatible with, the Stanford MIPS-X processor. The addition of self-timing to the
' MIPS-X architecture allows the pipeline to sequence at a rate defined by the pending
functional unit operations, the resulting silicon process, and the present environmental
conditions. The design changes improved the performance of the processor by 2-3 times.

This chapter details the architectural implementation of STRiP. First an overview of
the critical functional units is provided, followed by implementation details of the
dynamic clock generator elements. Next we give a brief description of an external
interface and exception handling protocol. Finally, we analyze the performance of
STRIP and compare the results with other modern processor designs.

5.1 Basic Structure

The STRIP instruction set architecture is identical to the MIPS-X architecture and is
pipelined so that one instruction can be issued every cycle. Appendix D gives more
details on instruction encoding and execution characteristics. Each instruction is
designed to execute through a five-stage pipeline with the following execution pattern:
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Instruction Fetch IF
Register Fetch and Instruction Decode RF
ALU Operation (add, sub, shift, compare, logical) ALU
Data Memory Access (load/store operations) MEM
Register Write-Back WB

Each pipelined processing stage is divided into two phases, ¢1 and @2, supported by a
two-phase, overlapped, dynamically-clocked sequencing method. Because the functional
units are self-timed and designed to operate independent of the clock duty cycle, the
clock periods are the main timing constraint. Clock phases can be used to start, stop, or
extend processing but their length should not be used for timing within the functional
units.

There are several steps required in the development of a dynamically-clocked
processor. First, the operation of each functional unit must be optimized, independent of
the other functional units. This independent optimization is required since each can be
the critical logic path on any given cycle. Next, the critical logic paths and their
frequency-of-use are evaluated. From this information the dominant pipeline operations
are determined. Operations are selected for tracking within the dynamic clock generator
if they can be determined in the cycles before their occurrence. Finally, the dynamic
clock generator tracking cells are constructed and the logic generating the select inputs
designed.

The hardware implementation of a processor can be divided into seven major
sections: the clock generator, the internal memory system (including caches and
prefetching logic), the PC Unit, the Register File, the Execution Unit, the BIU (Bus
Interface Unit) and the Instruction Register/Decoder. Figure 5.1 is a block diagram of
STRiP's functional unit organization. A brief understanding of its key functional units
and floorplan is given in the following sections.

5.1.1 Critical Functional Unrits

The functional unit designs used in STRiP were based on MIPS-X implementations.
Only minor changes were required to most of the MIPS-X functional unit designs. The
unit requiring the most change was the Execute Unit. The Execute Unit includes a 32-bit
ALU, a 64-bit to 32-bit funnel shifter, MD registers that support multiplication and
division, and the processor status word (PSW). As in most processor designs, the ALU is
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one of the most timing-critical datapath units. The MIPS-X ALU implements all of the
logical and arithmetic operations, as well as providing branch comparisons and load/store
address caiculations. The adder accounts for a significant amount of the ALU's logic
delay. Because MIPS-X used precharged logic for its adder implementation (Manchester
carry-chain), it was inefficient for dynamic clock operation. A high performance static

design was required.
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Figure 5.1: STRiP Block Diagram
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There have been several studies relative to algorithms, implementations, and
performance for computer addition [80, 103, 105]. The adder designs considered
included carry-look-ahead, conditional sum, carry-select, multiple-output Domino logic,
Ling, and parallel. Table 5.1 gives a relative performance comparison of the adder
designs considered. A parallel adder [103], modified for efficient operation in a
dynamically clocked pipelined, provided the best performance and reasonable complexity
for the targeted CMOS technologies. The parallel adder also required minor
modifications to provide the other ALU functions, logical and compare operations. The
same adder designed for the ALU is used in the Prefetch Units and PC Unit. This
approach will insure the tracking of all units which require addition.

Adders # of Serial Transistors # of Complex Gate Delays
from cj, to S32 from c;p to S3p

Carry-Look-Ahead 21 6
Conditional-Sum 16 5
Carry-Select 18 5
Multiple-Output Domino 18 5

Logic

CMOS Ling 14 4

Parallel (Mod. Todesco) 14 7

Table 5.1: CMOS adder performance comparison.

One other element in the Execute Unit required minor modifications. The shifter
used in the MIPS-X implementation was a two-stage funnel shifter. This shifter structure
proved to be efficient and only required changes to the transistor sizes for optimum
operation.

Another critical functional unit, used by every instruction, is the Register File. The
Register File provides the operands to the Execution Unit and memory system. It also
contains bypass or holding registers which provide computed-but-not-yet-stored values to
the instruction stream. The Register File is basically a 32 word, triple-ported (two read
ports, one write port) static memory. If the register file is slower then the other critical
logic functions, it will dominate the performance potential of the processor.
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The main difference between the Register File used in STRiP and the one used in
MIPS-X is the ability to simultaneously read and write the register file, instead of time-
multiplexing the operations. To accomplish this, the register file required independent
read and write bit-lines and word-lines, a self-timed read-bit-line precharge circuit, a
self-timed write circuit, and a third bypass register (actually the third bypass register was
only required in the BICMOS implementation since the read-through-register operation
was not fast enough). The parallel read/write structure allows reads to start during the
beginning of the cycle, instead of during ¢2 as in MIPS-X. Performing the register read
and write operations in parallel reduced the total Register File cycle time. Figure 5.2is a
floorplan diagram of STRiP's Register File and the memory cell used in the Register
Array.

As mentioned in early chapters, the memory system often limits the processor
sequencing rate. Since instruction fetches are required during every processor cycle and
data fetches 30% of the time, the average memory access time is critical. For this reason
STRIP uses the internal memory system described in Chapter 4. Zero-level caching with
predictive prefetching will remove the memory system from the critical logic paths. To
support this memory subsystem, a finite-state-machine (FSM) handling zero- and first-
level cache miss and prefetch cycling is required. The state diagram for the internal
memory FSM is shown in Figure 5.3. Both the instruction and data paths require a FSM
with these states.

When in the RUN state, the zero-level Tag Unit signals the state machine upon a
cache miss or prefetch request. This signalling occurs at the end of ¢1. In the
RUN/Prefetch state(s) the pipeline sequences normally with a prefetch operation
occurring in parallel. The RUN/Prefetch state(s) are entered after a prefetch request, a
prefetch hit-compare, or a first-level instruction cache hit. The prefetch operation always
requires two cycles. This is due to the speed of the first-level instruction cache versus
the minimum processor cycle time. If a zero-level instruction cache miss occurs during
the first Prefetch/RUN state and the missed address is different than the prefetch address,
that prefetch operation is terminated. This eliminates unnecessary stall time due to the
overlapping of prefetch and fetch operations. If a zero-level cache miss occurs during
the second Prefetch/RUN state and the missed address matches the prefetch address, the
prefetched data is bypassed to the target register.
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Figure 5.3: State diagram for internal cache miss FSM.

A first-level cache access state is entered on a zero-level cache miss or prefetch miss-
compare. A first-level cache access in this state is one cycle, since the dynamic-clock
generator adjusts the cycle time to match the cache access time. If a first-level cache
miss occurs, the state machine sequences through an external memory request cycle.
Note that the machine requires two cycles to fetch information from external memory,
similar to MIPS-X. The first external miss cycle reads the cache block from the external
memory, while the second cycle writes the block into the zero-level and first-level
instruction caches. The machine takes advantage of this by starting a prefetch cycle
during the second cycle of the first-level cache miss.

5.1.2  Datapath and Floor Plan

Proper floor planning and datapath design is critical in the efficient operation of the
processor. Figure 5.4 shows the hardware resources contained in STRiP's pipeline, the
phase on which each latch is controlled, and the major buses that connect the pipelined
elements. The main differences between the STRiP datapath structure and MIPS-X is the
use of internal data caches, a tri-state result bus (instead of precharged), and the Execute
Unit configuration. The prefetch units and first-level caches are not considered part of

the main pipeline.
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Figure 5.4: STRiP's datapath diagram.
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The proposed floor plan, Figure 5.5, gives a good indication of the major bus
locations relative to the connected functional units. The SRCI and SRC2 buses are used
to read data from the register array, bypass registers, and immediate field and provide
that data to the Execute Unit. The Result Bus carries data to the bypass registers, the PC
Unit (for indexed jump operations), and memory address register (for load/store
operations). The PC Bus contains instruction fetch addresses generated by the PC Unit.
The Immediate Bus carries immediate values from IR for use in the PC Unit and the
Execute Unit. The Mem Data Bus and Instr Data Bus carry data from the first-level
caches to the zero-level caches during a zero-level cache miss or prefetch cycle.

All of the functions and structures discussed thus far in the chapter provide a general
framework of the hardware organization used in STRiP. The next sections describe
functional elements which are critical for self-timed operation via dynamic clocking.
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5.2 Tracking Cell Designs

The key elements in the dynamic clock generator are the tracking cells. Each tracking
cell must be designed to exactly match the operational delay of the targeted critical logic
path. To achieve accurate tracking and optimum performance, the tracking cells
incorporate the same type and size of series gates, signal wires, and loads seen in the
critical logic paths. Santoro [83] in his self-timed multiplier research found this
approach to building tracking elements provided accurate tracking under all
environmental conditions. Signal loading is duplicated by using active and passive
devices sized to match the total gate load per signal. The length and type of material
used to create each critical path signal wire is also used by the tracking cell. Because
each tracking cell must be inverting, some tracking cells may contain one less series gate
than the actual critical logic path. The C-element delay compensates for the lost gate
delay.

To support symmetric output transitions, the organization of the critical path gates
may be altered in the tracking cell. Most gates in the STRiP implementation are ratioed
to optimize performance and symmetric operation, eliminating the need to rearranged
gates for symmetric tracking cell operation. But, in some complex gate designs it is
difficult to provide identical transition delays. A simple example of this situation is
given in Figure 5.6. In the processor critical logic path the XOR gates alternate in the
series gate positions, causing them to switch to the same logic state. If the XORs are
asymmetric, this structure reduces the symmetry of this series connection of gates.

Non-critical Inputs

oS T e S p—oupu

- Actal critical logic path -

e ol oL P e

Trigger
- Tracking Cell equivalent circuit -

Figure 5.6: Example critical logic path and equivalent tracking cell circuit.
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The tracking cell equivalent circuit places the XOR gates back-to-back in the chain of
gates. But, the worst-case path may be the XORs switching to the same logic level,
resulting in a slower circuit than the XORs switching to opposite levels. Therefore, this
rearrangement of gates can eliminate tracking of the worst-case path. If this is the case,
addition loading is added to simulate the worst-case delay and still provide symmetric
operation. Also, worse-case inputs are used while minimum delay inputs are tied off.
This guarantees that for each clock cycle controlled by this tracking cell, the number and
type of gate transitions will be identical and worst-case.

Before the tracking cells are designed, the critical operations to be tracked must be
chosen. Table 5.2 gives the latency and frequency-of-use for the critical logic paths.
The latencies are normalized to gate delays (one gate delay equals an inverter delay with
a fanout of four). An instruction fetch occurs on every machine cycle, but the zero-level
cache latency is less than the next most frequent operation, addition. An addition is
required 65% of the time (100% if PC increment is included). Therefore, the Execute
Unit's add operation was chosen as the minimum delay critical logic path in the pipeline.
The next longest pipeline operation is a compare-and-branch. It is approximately six
gate delays longer than the add operation delay and occurs 15% of the time. A first-level
cache access caused by a zero-level cache miss occurs infrequently (approximately 6% of
all references) but has delay of roughly twice that of the add operation. Therefore, first-
level cache access must be tracked during pipeline stalls caused by zero-level cache
misses. The slowest operation is an external transfer. Its delay is indeterminate and
ranges from a second-level cache access to an 1/O transfer for a device on a system bus.
A special tracking cell is designed to monitor these request to external devices, stop the
clock when they occur, and restart the clock upon their completion. Therefore, the
dynamic-clock generator contains four tracking cells. The following sections give
detailed implementations for each of the tracking cells.

5.2.1 Adder Tracking Cell

The adder tracking cell was designed to track the add/subtract/compare operation in the
ALU. The ALU add operation occurs during add/subtract, jump, and load/store
instructions. Add operations also occur in other functional units for branch address
calculation, prefetch address calculation and PC incrementing. The ALU critical logic
path proved to be slightly longer than the other logical units performing addition. Figure
5.7 shows the gates and internal loads used to match the ALU add critical logic path.
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The complex gates match those gates used in the carry-look-ahead section of the parallel
adder design chosen for the critical functional units. The figure also illustrates how the
logic was connected in a series. Care was always taken to connect the gate input
providing the worse case delay to the series connections in the tracking cell. All other
gate inputs are strapped to Vcc or GND.

Critical Operation Freq.-of-Use Latency
(per instruction) ( (gate delays)
Register Access 100% 13
L0 ICache 100% 15
L0 DCache 30% 15
Adder* 65% 18
Compare & Branch 15% 24
L1 ICache 2.5% 45
L1 DCache 4.0% 45
External Cycles 1.0% 100

Table 5.2: STRIiP's critical path latencies and their frequency-of-use.

The adder tracking cell consist of eleven series connected gates. These gates, plus the
C-element, have a logic latency of 17 gate delays. The critical path of the add operation
actually contains an additional lightly loaded result bus latch. The latch was not included
in the tracking cell since it would cause the tracking cell to be non-inverting. The C-
element delay compensates for the latch delay. To accurately track the source and result
bus loading, the wire between the tri-state drivers and the input to the next series gate
must be the same length, width, and material type as the actual source and result buses.
To improve tracking accuracy, active gates and passive transistors are used to simulate
similar loads in the ALU critical logic path.

The adder tracking cell is active on every cycle. Its logic delay sets the minimum
sequencing period of the pipeline, thus not requiring a select input. Its output connects to
the A input of the C-element. The A input, by design, provides the least logic delay.
This optimizes the clock generator to support the minimum sequencing period, which has
the highest frequency-of-use. The CarryOut signal is used as an input to the branch
tracking cell. This is possible since the compare operation for the branch instruction uses
the ALU adder. Therefore, the compare-and-branch critical logic path is identical to the
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ALU adder path, up to the CarryOut signal. Sharing of logic functions reduces the
dynamic-clock generator logic.
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Figure 5.7: Gate level schematic of adder tracking cell.

5.2.2  Branch Tracking Cell

The branch tracking cell tracks the next slowest of the processor pipelined critical logic
paths. It also represents the next most frequent operation executed by the processor. The
total number of gate delays required in a compare-and-branch operation is approximately
22 (the tracking cell + C-element). The frequency-of-use of a conditional branch
operation is 15% [37, 75]. Besides having the adder in its critical logic path, a branch
operation also includes additional logic to determine greater-than, less-than, or equal-to.
Additionally, the branch logic path contains address selection multiplexers and drivers.
Even though the branch-on-equal operation has a faster compare delay (it does not
require the full adder delay), it was included in the set of branch operations. To improve
performance in the actual design, the branch-on-zero could be eliminate from the decoder
selecting the branch tracking cell.

Figure 5.8 shows the gate level implementation of the branch tracking cell. Two 2-
to-1 multiplexers are used to select between the full delay of the tracking cell and the set
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trigger, which forces the tracking cell to switch early. The tracking cell delay is less than
the minimum cycle time when a compare-and-branch operation is not selected. When
the tracking cell is triggered for minimum delay, it is set up to respond immediately to
the next input change for the next cycle. The selection multiplexers also closely match
the pass transistors used in the actual branch critical logic path, adding little additional
delay to the optimum cycle time. The XOR gates were rearranged (as compared to the
actual logic path) to provide symmetric operation of the tracking cell.

CEoutDly
(from pulse gen.)

CLKG b:DfD(H

BSelect_b

G e Dy
tracking cell

Figure 5.8: Branch tracking cell gate-level diagram.

Three main design constraints control the configuration of the branch tracking cell as
well as any other tracking cell designed for selectability. First, the logic delay of the
circuit between the 2-to-1 multiplexers must be less than the adder tracking cell delay,
minus the pulse generator delay. This is required to guarantee that the tracking cell is set
to the final state before the next cycle begins (the C-element changes state). This
constraint also holds true for the tracking cell circuit delay between the output 2-to-1
multiplexer and the input to the C-element.

The second constraint applies to the input signal of the 2-to-1 multiplexers. The
multiplexers select the full tracking cell delay during ¢g1. This gives the tracking cell
select inputs time to become valid (stable-¢2 signals). If the tracking cell is selected, the
full tracking cell delay selection is maintained through ¢2. If the tracking cell is not
selected, the tracking cell output is switched early. The multiplexer data input, which
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advances the tracking cell when not selected, must be driven by a stable-g2 signal.
CEoutDly is the multiplexer data input which satisfies this constraint. CEoutDly is a
signal generated near the end of the pulse generator inverter chain and is basically the C-
element output delayed by several gate delays. This constraint guarantees monotonic
operation of the tracking cell output.

The last constraint relates to the select input to the tracking cell. The select input
must be a stable-g2 signal, relative to the clock generator local output signals. This
constraint also guarantees monotonic operation of the tracking cell output. To satisfy this
constraint, the pulse width generated by the pulse generator, which results in the g1 time
of the pipeline, must be equal to, or greater than, the total delay of the global clock
buffers, the clock distribution network, the local clock buffers, the select control latch,
and the select input wire delay. These logic delays account for the clock skew between
the clock generator and the functional unit output signals.

523 First-Level Cache Tracking Cell

The first-level cache tracking cell is designed to provide an accurate indication of the
access time of the first-level instruction and data caches. This cell is selected during the
pipeline stall cycle after each zero-level cache miss. The first-level cache tracking cell is
not selected during prefetch request. In this case two pipeline sequencing periods (two
minimum delay cycles) are required for each prefetch operation. From the analysis of
the memory hierarchy (Chapter 4) we find that the first-level cache tracking cell is
selected on approximately 6% of the processor cycles. By using a tracking cell for first-
level cache accesses, the dynamic clock generator can provide the proper sequencing
period without a completion detect signal from the cache. Eliminating the completion
detect handshaking for first-level cache cycles eliminates the clock startup time occurring
after a completion signal is received. This savings is significant. QOur results indicate
that the startup time is approximately 20% of the cache access time.

The first-level cache tracking cell is the most complicated of the tracking cells. The
tracking cell models the delay of the cache RAM shown in Figure 5.9. A STRIP first-
level cache is 8KB in size with an interface data path size of 16 bytes (128 bits). The
cache is divided into 128 word-lines of 512 bits each. The word-lines are split to limit
the number of bit-line loads to 64. The design also assumed each word-line uses local
word-line drivers to distribute the word-line loads. A 4-to-1 multiplexer selects the
addressed 128 bits from the 512 bit access group. Each multiplexer drives the first-stage
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of a two-stage static sense amp. Static sense amps are used to maximize the performance
of the cache and to simplify the tracking cell implementation. The worst-case access
path includes the compare logic of the tag bits. Cache write operations are not tracked
since they always occur in parallel with other pipeline operations or during external
interface cycles. The gate ievel implementation of the first-level cache tracking cell is

shown in Figure 5.10.
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Figure 5.9: First-Level Cache floor plan.

The tracking cell contains all of the elements used in the access path of the first-level
cache. Because of the unique operating characteristics and constraints of the tracking
cell, the tracking cell elements are not connect in the same serial order as in the actual
critical logic path. This does not reduce the tracking cell accuracy, but does reduce its
complexity. The following is a list of serially connected elements which makeup the
critical logic path for a first-level cache access:
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- address latch and buffers

- predecoder

- decoder and global word-line driver

- local word-line driver and word-line loads
- bit-line select transistors and bit-line loads
~  4-to-1 multiplexer

- first and second stage sense amps

- address bit compare

- address word compare

- hit/miss latch

To provide accurate tracking, the first-level cache tracking cell includes the
equivalent loads present on the predecoder, global word-line, local word-line, and bit-
line signals. Figure 5.10 shows these load as active gates or passive transistors. Since
capacitance dominates the loading characteristics, appropriately sized transistors
connected as capacitors are used instead of full active gates. Also, delays caused by large
gates driving large loads can be accurately duplicated by using small gates driving small
loads. These approaches require detailed analysis and understanding of the capacitive
loads and drivers associated with each connection, but can provide a smaller physical
layout. The safest, but most area intensive, approach is to use exactly the same gates and
loads used in the cache. Only when this approach is too area intensive should ratioed-
down gates and loads be substituted.

5.24  The External Interface Tracking Cell

The external interface tracking cell is selected for each external data transfer cycle,
except for resource-independent stores and write-back operations. It allows the clock
generator to stop or suspend operation until the external device signals data-transfer
completion. The completion signal is also internally buffered to match the data signal
delays. These delays are caused by pad buffers, bus drivers, bus loads, and device
latching. Because the clock period is not known in advance, the clock generator startup
time adds overhead to the optimum cycle time. The clock startup time associated with an
external operation includes the tracking cell delay and the C-element delay, totaling
seven gate delays. Assuming a 0.8um CMOS process and a minimum external cycle of
40ns (second-level cache access), the clock startup time will add less than 10% to the
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optimum cycle time. Some of the clock startup time can be hidden by overlapping the
clock startup delay with some internal data signalling delays. Figure 5.11 is a gate level
schematic of the external interface tracking cell.
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Figure 5.10: First-level Cache tracking cell gate-level diagram.

CLKG
ESelect b

CLKG_ b

CEoutDly CEinD
(C-clement input)
CAsD D:_L:j

MReq_b
MAck_b
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The external communication protocol can also add overhead to the data transfer
between asynchronously operated devices. This overhead is reduced by overlapping the
external handshaking with the clock startup, allowing the processor to continue
processing before the external handshaking has completed. Figure 5.12 is a timing
diagram of a external read operation. ACK_b switching low (active) indicates that the
data is valid on the external bus, allowing the processor to continue operation as soon as
the data can be latched. The REQ_b inactive to ACK_b inactive delay need not be part of
the internal cycle, improving overall system performance. The internal communication
control logic must also guarantee that the external bus signals and REQ_b not be driven
until the ACK_b signal is inactive. With proper protocols, the asynchronous external
interface can optimize the systems performance and interconnection efficiency.
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Figure 5.12: Timing diagram showing external tracking cell signals during read cycle.
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3.3 The KNOB

All synchronous processors have a maximum clock frequency which provides reliable
operation under all environmental conditions defined for the system. This maximum
clock frequency depends heavily on the accuracy of the design implementation and
process parameters for a given manufacturing run. If an error is made during logic
synthesis or the process parameters change, increasing the critical logic delay, the clock
frequency is reduced to provide reliable operation. This ability to set the clock frequency
based on the resulting implementation and process parameters is important, allowing
increased manufacturing yields and usage of otherwise broken devices.

The ability to compensate for implementation errors or miscalculations is important
in a dynamically clocked processor design. If the dynamic clock generator design is
correct, the processor will automatically adapt to variations in process, temperature, and
voltage. But the reliable operation of a dynamically clocked structure depends on the
designer’s ability to target critical logic paths and build tracking cells which accurately
match those logic delays. If the designer has one too few gates in the tracking cell or
pulse generator inverter chain, the resulting processor chip would be rendered non-
functional. To compensate for possible design errors, a method was developed to adjust
the tracking cell and pulse generator delays via external signals. The method and
implementation used to provide this flexibility is called a KNOB.

53.1 Impleméntation Alternatives

The main purpose of tracking cell and pulse generator KNOBs is to provide adjustability
to the clock characteristics, which are controlled by the clock generator delay elements.
The addition of a KNOB transforms these static delay elements into adjustable delay
elements. The KNOB adjustments are set during system-board manufacturing and are
not meant for dynamic adjustment during normal processor operation. Its main purpose
is to allow an otherwise non-functioning device to operate properly, but with
performance reduced from the target level.

Four major candidates for KNOB implementations were identified: controlling the
supply voltage of selected gates in the logic path, using multiplexers to select between
several logic delay paths, using voltage-controlled current-starved logic gates [48], and
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adding voltage controlled load capacitors to internal delay element signals [12). Each
will be briefly analyzed in this section.

The KNOB used in STRiP's dynamic clock generator must meet the following
constraints:

(1) The KNOB circuitry, when disabled, should not affect the delay element
timing.

(2) The KNOB should require a limited number of input control signals (less
than four for all generator delay elements).

(3) The KNOB should not add a significant amount of logic to the dynamic
clock generator circuit.

(4) The KNOB should operate under worse case conditions and not reduce the
effective operating range of the dynamic clock generator.

The first approach considered was to provide a separate and adjustable supply to
selected gates within the tracking cells and pulse generator. To support external CMOS
signal levels, the delay element input and output gates are sourced by the nominal supply
voltage. This isolates the reduced voltage signals from the other parts of the clock
generator. This structure is diagrammed in Figure 5.13a. The input control voltage is
VCTRL. As this voltage level is decreased from 5V, the circuit delay increases.
Conversely, a delay elements logic delay decreases as VCTRL is driven above 5V. But
VCTRL variability is limited to guarantee reliable signalling between the reduced voltage
gates and the normal supply voltage gates. Also, noise margins are reduced when
connecting gates with different input and output signal swings. Other problems with this
KNOB approach include tight control voltage tolerances, and added complexity to the
physical layout of the delay element.

An alternative method is adding multiplexers in the logic path of the delay elements,
allowing selection between several logic delay paths. Figure 5.13b illustrates how an
adjustable delay element might be implemented using this approach. The delay control
signals are decoded and used to select one leg of the multiplexer. Each leg is connected
to an increasing number of serial connected logic gates. This structure allows the
propagation delay of a delay element to vary within preselected, discrete increments.
The disadvantages of the approach is its limited variability, increased number of control
signals, and the required amount of implementation logic.
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Using current-starved inverters to build adjustable delay elements was suggested by
Jeong et al. [48] in their designs of PLL-based clock generators. Current-starved logic
gates can also be used to adjust the tracking cells and pulse generator propagation delays.
This approach uses a control signal to "current starve” a logic gate via a series-connected
device. A representative example of this approach is used in Jeong's CMOS clock
generator and is shown in Figure 5.14. VCTRL modulates the "ON" resistance of
transistor 71 and 72. These variable resistances control the current for charging and
discharging the output capacitance. Large values of VCTRL allow a large current to
flow, minimizing resistance and delay.

Figure 5.16 [51] shows delay time versus control voltage for a 12 stage inverter chain
operated at worst-case conditions and using a 0.8um CMOS process. The main problem
with this KNOB structure is the increased minimum logic delay caused by the current-
mirror circuitry. From our analysis, the minimum propagation delay of a current-starved
inverter is twice that of a normal CMOS inverter. This characteristic would make
building precise tracking cells difficult. Other problems include susceptibility to
crosstalk, noise injection, dc current drawn by the current-mirrors, and noise presented
on the control signal VCTRL.

The final approach considered involves using shunt transistors connected between
large load capacitors at the output of each internal gate. The resistance of the shunt
transistors is controlled by its gate voltage. Figure 5.15 shows an example of this
technique, used by Bazes [12] in an NMOS DRAM controller chip. The shunt transistors
allow VCTRL to control the effective loads seen by the internal gates. The larger
VCTRL, the larger the load, resulting in an increased logic delay.

Again, Figure 5.16 [51] shows the delay time versus control voltage for a 12 stage
inverter chain using variable capacitive loads at each inverter output. From the curve,
VCTRL can vary between the supply voltage rails without disabling the delay element
and provides a variation of approximately 3.3ns/V between VCTRL = 2V - 5V.
Therefore, using voltage controlled load capacitors provides better noise rejection than
using current-starved gates. Also this approach uses no dc power and can easily provide
a 2:1 variation to the propagation delay of each gate. Finally, the implementation size of
the variable loads should have little effect on the tracking cell and pulse generator
layouts.

Therefore, the use of variable-capacitive loads within the tracking cells and pulse
generator was chosen as the best implementation technique for the clock generator
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KNOBs. The next section describes how the design and performance of the tracking
cells and pulse generator are effected when using variable-capacitance KNOBs.
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Figure 5.16: Delay versus delay element control voltage assuming worst-case conditions
and a 0.8um CMOS process [51].

5.3.2 KNOB Design and Analysis

The addition of voltage controlled variable loads to the clock generator delay elements
converts these elements into voltage controlled delay elements or VCDEs. The elements
are designed such that their minimum delay will match the targeted functional
operations. If an error is made during the propagation delay analysis, the propagation
delay can be increased at the module or board level by increasing the KNOB control
voltage. The effects of the added circuitry on delay element performance as well as the
KNOB variability is analyzed in this section.

Two external signals are required: VCTRL,/p controls the adder, branch, and first-
level cache tracking cell delays, and VCTRLpg controls the pulse generator delay. With

the KNOB control signals set at 0V, the clock generator elements will operate at their
optimum speed. The stunt transistors are of minimum size, minimizing the additional
load seen by the logic elements when the KNOB is turned "OFF". The transistor size of
the load capacitors was 60/2 for the 2.0um CMOS process and 20/0.8um for the 0.8um
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CMOS process. The load capacitors must be sized so that the maximum load does not
adversely effect the internal signal quality. A KNOB was not required for the external
interface tracking cell since its period is externally controlled.

A variable capacitor is placed at each internal node of the tracking cells. This
additional load has little effect on nodes with large drivers and large loads. But the
majority of the internal tracking cell nodes are driven by minimum size gates with a
fanout less than four. The tracking cell variability provide by the KNOB can be seen in
Figure 5.17(a). This graph shows how the clock period in 2.0um CMOS varies based on
the KNOB control-input signal. The KNOB provides a variability of approximately 50%
over the minimum tracking cell delay. Both tracking cells varied at the same rate,
maintaining a delay differential of approximately 30%.

More variability is possible if each load capacitor was sized relative to the driver
capability of each node. The capability to increase the tracking cell delay by 50% is
adequate for most designs. If a design is more than 50% over target, its performance is
most likely inadequate to support the target system environment.

Figure 5.17(b) shows the pulse generator output variation versus the KNOB control
signal. The graph has basically the same shape as the plots shown for the tracking cell
variations. Since the series of inverters used to build the pulse generator delay element
are lightly loaded, we were able to create a pulse width variability of 100% over the
minimum period. This provided enough variability to compensate for any miscalculation
in the select feedback path or minimum latchable clock pulse width. Note that the
maximum @1 period is always less than the minimum clock cycle time. The minimum
92 period is also maintained at a reasonable amount, approximately 3ns.
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54 The C-element

A common component found in most asynchronous handshake and completion detection
circuits is the Muller C-element. Unlike other asynchronous structures using dual-rail
encoding, dynamic clocking uses a single C-element in the control of the processor
pipeline. This C-element is located in the dynamic clock generator and combines the
tracking cell outputs. Its primary function is to signal the pulse generator when all
tracking elements have timed-out. The C-element allows the selected tracking celis with
the slowest propagation delay to set the cycle period for the next pipeline operation.
Because the dynamic clock generator accuracy and performance depend heavily on the
C-element design, a detailed study was required. This section presents the design of
several types of C-elements and gives a performance comparison between them. The C-
element designs are structured to meet the requirements of the dynamic clock generator
circuit and may not be applicable for other logic structures.

54.1 C-element Constraints

The C-element combines the outputs of the tracking cells and generates an output signal
based on the last input transition. The C-element is a storage device whose output
changes state when all its inputs reach the same logic value. Its output remains in this
state until all the inputs change to the opposite logic value. The state-table given in
Table 5.3 describes the operation of the C-element. The primary C-element input
constraint restricts each input signal to a single transition (monotonic operation) for each
output transition.

The dynamic clock generator structure and logic implementation place special
requirements on the C-element design. If the tracking cells are designed to exactly match
the propagation delays of selected pipelined operations, the C-element delay adds
overhead to the optimum sequencing period of the pipeline. By optimizing the C-
element performance, this overhead can be minimized. In most designs the C-element
delay will be used to provide a level of guard-banding for the dynamic clock generator
design. Circuit design guard-banding is used to guarantee proper operation under
conditions un-foreseen during the development process. Independent of how the C-
element propagation delay is perceived or compensated for, its operating characteristics
and performance must match the requirements of the dynamic clock generator.
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Table 5.3: C-element State-Table

The following is a list of design requirements and constraints used to develop the C-
element for the dynamic clock generator:

(1) Performance - The nominal propagation delay of the C-element must be
as small as possible. The smaller the delay, the less the need for delay
compensation in the tracking cells.

(2) Number of Inputs - Since the pipeline structure requires four operations
to be tracked, the C-element must be able to receive four tracking- cell
outputs. The C-element also requires a reset input for initialization. The
reset design assumes that the C-element inputs will be set to the same
logic level before reset is released. The dynamic clock generator design
guarantees this constraint.

(3) Drive Capability - The C-element must be able to drive 16 standard loads
(a standard load is equivalent to the fan-in of a minimum size inverter).
The rule of thumb used throughout the design is a logic gate can have a
maximum fan-out of four. This implies that the C-element output drive
transistors must be four times the size used in a standard size gate.

(4) Fan-in per Input - To minimize the effects of output loading on the total
tracking cell delay, the C-element fan-in per input is limited to four.
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(5) Symmetric Output Transitions - The propagation delay for rising and
falling output transitions must be equal. (This constraint applies for each
input, separately; the propagation delays among different inputs need not
be the same.) Symmetry is important property for minimizing the clock
period variation between "like" pipeline operations. Asymmetry reduces
the sequencing accuracy of the dynamic clock generator, reducing the
processors optimum performance.

(6) Reliable Operation - The C-element must be able to operate reliably
under worst-case conditions for supply voltage, temperature, process, and
all noise sources. Since C-elements can be designed with dynamic nodes,
charge-sharing among series stacked transistors can be a problem.
Charge-sharing within the C-element can significantly reduce its noise
margin and reduce reliable operation.

(7) Dynamic Storage - STRiP's logic implementation and analysis assumes
the use of dynamic latches. This implies a minimum rate for pipeline
sequencing. Because of this structure, the C-element can also use internal
dynamic storage between state changes.

(8) Power Consumption - Static power consumption should be zero.

The following sections will discuss several C-element designs, their attributes, and the
performance measured through SPICE simulations. The process parameters used during
the SPICE simulations were from a MOSIS 2.0um CMOS process. All transistor level
schematics give device sizes in A. For a 2.0um process, A = 1u.

5,42  C-element Designs

There are many ways to design a C-element. We analyze seven different C-element
designs, two of which were developed in the course of our research. The designs studied
include: cross-coupled NOR gates, a majority function gate, a pseudo-NMOS design [46,
64], a 4-input dynamic C-element, a 4-input dynamic C-element with charge-sharing
reduction logic (developed during our research), a tree of 2-input dynamic C-elements,
and a new design called a pseudo-dynamic C-element. The circuit diagrams for these
designs are given in Appendix E. The cross-coupled NOR and majority function designs
are fully-static logic structures. The dynamic C-element designs have internal dynamic
nodes with outputs which are always actively driven. Charge-sharing reduction logic
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was added to the 4-input dynamic design to improve its operating characteristics, creating
a new structure. The pseudo-dynamic C-element was developed specifically to satisfy
the requirements of the dynamic clock generate.

The pseudo-dynamic C-element design takes advantage of the monotonic input
operating constraint and provides a C-element function by only using NMOS transistor
stacks. Figure 5.18 gives an diagram of this C-element. Using only NMOS stacks, the
performance of the gate is optimized. This optimization results from the NMOS
switching characteristics and the reduced capacitive load on major internal nodes.
Charge-sharing reduction circuitry was also incorporated in the pseudo-dynamic C-
element gate to maximize reiiability. The number of devices used in the implementation
is relative large, but did not affect the overall element performance. Analysis shows that
the pseudo-dynamic C-element provides the best operating characteristics of all the C-
element designs studied.

All transistors are 4x minimum
size unless specified.

Figure 5.18: 4-input pseudo-dynamic C-element logic diagram.
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543 Performance Analysis

The main goal of this C-element comparison is to determine which design provides the
best operating characteristics and highest performance. Each C-element is analyzed
using the SPICE simulator and 2.0um MOSIS CMOS process models. All measurements
were taken using nominal supply voltage levels and temperature, 5V and 25°C.
Operation was checked at worst-case conditions, 4V and 125°C, to guarantee correct
behavior but not to check propagation delay. The inputs were connected such that if a
series transistor stack exist in the C-element, input A drives the transistors connected to
the deepest internal node and input D drives the transistors connected to the supply
nodes.

To study the propagation delay of each C-element design, three input transition
patterns were used. These input patterns included: (a) inputs BCD change state first
(simultaneously) and then input A changes, (b) inputs ABC change state first
(simultaneously) and then input D changes, and (c) all inputs change simultaneously.
Input pattern (a) provides a understanding of the propagation delay from the minimum
delay input. Pattern (b) will give the propagation delay for the worst-case input and also
yield the worst-case charge sharing effects. The last input pattern yields the worst-case
propagation delay of the C-element. Another input pattern, inputs ABD changing state
first and then input C changing, was also tested to better understand the extent of the
charge-sharing effects. Tables 5.3, 5.4 and 5.5 give the results of the performance
analysis.

The pseudo-dynamic design provides the fastest and most symmetric operating
characteristics of all the designs we considered. Its propagation delay from the minimum
delay input, A, was well under the target criteria with an output transition asymmetry of

15%. The symmetry was further improved by reducing the size of the A input inverter
which drives the output transistor stack. This modification increased the tpyy, delay to

match the tpp j delay. Simulation also showed how the charge-sharing reduction circuit

bootstraps the output by 0.25V when inputs BCD change state. The bootstrapping does
not effect the reliable operation of the C-element. When all inputs are switched
simultaneously, the pseudo-dynamic design also provided the best operating
characteristics. The pseudo-dynamic C-element was typically 25% faster than the other
implementation techniques for all input patterns.

Charge-sharing was most evident when input D was switched after inputs ABC had
changed state. The 4-input dynamic C-element design without the charge-sharing
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circuitry failed with this input sequence. Charge sharing changed the internal node
voltage by more than 2.5V. This was enough to cause the output to switch prematurely.
By adding the charge-sharing reduction circuitry to the dynamic design, the negative
charge-sharing affects were significantly reduced.

C-element Qutput Delay from input A

C-clement Design tPLH (ns) tPHL (ns)
pseudo-dynamic 1.47 1.27
dynamic 2.05 1.56
dynamic w/charge- 2.07 1.59

sharing reduction

dynamic tree 2.25 2.05
pseud0-NMOS 2.42 1.99
cross-coupled NOR 3.21 2.45
majority function 3.70 3.05

Table 5.4: C-element propagation delay from A to Q with a fanout of 16.
Technology = 2.0um CMOS (MOSIS)

C-element Output Delay from input
ABCD switched simultaneously
C-element Design tPLH (ns) tPHL (ns)
pseudo-dynamic 2.07 2.08
dynamic 2.12 1.89
dynamic w/charge- 2.40 2.45
sharing reduction
dynamic tree 2.60 2.45
pseud0-NMOS 2.65 2.45
cross-coupled NOR 3.83 3.05
majority function 3.84 3.57

Table 5.5: C-element propagation delay from ABCD switched simultaneously to Q with
a fanout of 16. Technology = 2.0um CMOS (MOSIS)
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C-element Output Delay from input D

C-element Design tPLH (ns) tPHL (ns)
pseudo-dynamic 2.07 2.08
dynamic failed due to charge sharing
dynamic w/charge- 2.46 2.73

sharing reduction

dynamic tree 2.75 2.70
pseud0-NMOS 2.71 2.02
cross-coupled NOR 3.53 2.95
majority function 3.76 3.67

Table 5.6: C-element propagation delay from D to Q with a fanout of 16.
5.5 The External Interface

The connection of STRiP's CPU to the outside world is done by the Bus Interface Unit
(BIU). It is important that this interface minimizes the overhead required for external
data transfers. All external data transfers between the second-level caches, system
memory, coprocessors, and main system bus use a fully asynchronous handshaking
protocol. This type of interface allows devices and subsystems of different operating
speeds to communicate easily and efficiently across a common bus. Many times the
processing and data transfer rate of the processor is different than the external memory
device's data access time and transfer rate. A synchronous interface must insert extra
delay (cycles) to synchronize the communication between these two dissimilar devices.
By using dynamic clocking, the internal processor clock stops during the external transfer
until the external device signals completion.  This capability eliminates the
synchronization overhead and potential metastable conditions common in synchronous
interfaces.

The external interface is designed to support an optional second-level copy-back
cache. For cache coherency, signals are provided to allow snoop operations to the
internal caches. The second-level cache is assumed fully inclusive of the internal first-
level cache. Therefore, the external cache will always be snooped first, reducing the
snoop bandwidth to the internal caches. The basic organization of a single-processor
subsystem is shown in Figure 5.19.

This section gives a brief description of STRiP's external communication protocol.
The interface assumes an external floating-point coprocessor, similar to MIPS-X. The
number of interface pins was selected based on presently available package technologies
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and was not limited to the same packaging chooses available to the MIPS-X designers.
Detailed signal descriptions are given in Appendix F.
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Figure 5.19: Processor complex block diagram.
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5.5.1 Communication Protocol

The majority of the external data transfers are to/from the external memory system. The
external memory system can contain caches (second-level) built with SRAMs and main
system memory, typically built with DRAMs. External memory transfers are caused by
an internal first-level cache miss, a sequential prefetch, or a first-level data cache copy-
back cycle. All external read transfers caused by an internal miss occur while the
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pipeline is stalled. Prefetch and copy-back cycles can occur in parallel with normal
pipeline sequencing. We will describe the generic read and write protocol for STRiP's
asynchronous interface since the signalling is the same independent of the request type
(cache or main memory).
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Figure 5.20: Timing diagram showing generic, external read and write cycle signalling.

Figure 5.20 illustrates the external signal timing supporting an external read (caused
by a internal cache miss), followed by an external write (caused by a copy-back request).
The following is a list of relative signal transitions (labeled in Figure 5.20) to support
these transfers:

1. The BIU drives the miss address on to the Address Bus at the beginning of ¢1.
Read/Write_b is also driven high to indicate a read cycle.

2. The BIU drives Request active at the beginning of ¢2. Address Bus and
Read/Write_b setup to Request active is Ons (min.).
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3. Request causes an external memory system access. The requested memory
system device drives the accessed location on to the Data Bus. If the accessed
location is available, Miss is also driven inactive.

4. Once valid data is driven to the Data Bus, the external device drives
Acknowledge active. The Data Bus and Miss setup to Acknowledge active is
Ons (min.).

5. The Data Bus is driven on-chip and latched into the internal caches and target
register on the rising edge of the internal clock. Miss is also sampled to
determine if the data is valid. The internal pipeline continues operation,
independent of the BIU's exiemal cycling.

6. The end of the external read cycle causes the BIU to drive Request inactive.

7. The external memory system releases the Data Bus, drives Miss high and
Acknowledge inactive, indicating that the external bus has been released. Data
Bus released and Miss setup to Acknowledge inactive is Ons (min.).

8. Once the BIU recognizes that the external data bus has been released, the write-
back address and data are driven to the bus, along with Read/Write_b driven
low.

9. At the beginning of the next g2 clock phase, Request is driven active, starting a
write cycle. Address Bus, Data Bus, and Read/Write_b valid to Request active
is Ons (min.).

10. When the external memory system successfully completes the write access, it
drives Miss low and Acknowledge active. Miss setup to Acknowledge active is
Ons (min.).

11. The BIU drives Read/Write_b high, tri-states the Data Bus, and drives Request
inactive. Read/Write_b high and Data Bus tri-state setup to Request inactive is
Ons (min.)

12. The external device completes the protocol by driving Miss and Acknowledge
high. Miss high to Acknowledge inactive is Ons (min.).

Although the full protocol is based on a 4-phase asynchronous handshaking protocol, the
read latency seen by the processor is similar to a 2-phase protocol. Therefore, the
transfer latency is primarily dependent on the external-devices access time since most of
the communication overhead has been eliminated. The BIU uses fundamental mode
logic structures to handle the asynchronous signalling between parallel processor requests
and external device handshaking. This is required since the end of the read-cycle
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handshaking and the entire write cycle occur in parallel with the internal-pipeline
sequencing of subsequent instructions.

Note that only signal setup times need to be specified, relative to Request and
Acknowledge. All setup times are Ons (min) and must be guaranteed by the device
driving the control signals. Hold times are automatically guaranteed by the asynchronous
protocol. The protocol is designed to function properly independent of the connected
devices' processing rates. Since the interconnection of asynchronous devices is correct-
by-design, very little timing analysis is required by the system designer.

To guarantee reliable operation, the Request and Acknowledge wire delays and
loads must be greater than or equal to the other interface signals (Address Bus, Data
Bus, etc.). This guarantees the setup times as seen by the receiving device. This requires
an increase awareness by the system designer of the circuit board characteristics.
Synchronous interfaces can easily hide miss-matches in control signal loading, but
asynchronous interfaces depend heavily on the control of these circuit board delays.
Traditional synchronization logic is used to handle input signals which occur
asynchronous to the pipeline sequencing (external interrupts or bus requests).

Dynamic clocking supports a fully asynchronous interface without the
synchronization overheads caused by mismatches in device operating rates. The ability
to stop the clock during external stall cycles provides a efficient means of
communications without metastable conditions. Asynchronous interrupt inputs and bus-
request signals are handled as they are today in synchronous processors, but these signals
are not in the critical processing path of the processor. Therefore, STRiP's external
interface provides an means of interconnecting devices independent of their processing
rates, without imposing synchronization overheads or 4-phase latencies.

5.6 Exception Handling

To support precise exceptions, STRiP (like MIPS-X) delays all processor state changes
until the final pipeline stage (WB). Data/instruction transfers to external processors
(coprocessors and floating-point processors) are also delayed until the final pipeline
cycle.  All instructions executed by the pipeline are issued and retired in order.
Therefore, when an exception occurs, all instructions in the pipeline are restartable.
Because of this feature, STRiP does not allow any instructions in the pipeline to
complete after an exception is received. This is true independent of which instruction
caused the exception.
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All floating-point operations will also be issued and retired in order of their
occurrence. But since the external FP processor operates asynchronously, relative to the
scalar pipeline, FP operations are retired out-of-order, relative to the scalar instruction
stream. Software interlocks can be used to guarantee ordering where required. These
interlocks are not recommended since they restrict parallel processing of the scalar and
FP operations. To handle FP exceptions, the FP processor must store the issued chain of
encoded operations which have not been retired (not instruction addresses like the PC
Chain). The FP processor must halt its pipeline sequencing once an FP exception is
detected and must remain idle until the scalar processor can service the exception.
Therefore, the FP exceptions are not precise with respect to the scalar instruction stream,
but are precise with respect to the issue order of FP operations.

In response to an exception, the pipeline is halied and the PC is immediately set to
zero (exception vector address). The PC Chain is frozen so that the addresses of the
instructions in the RF, ALU, and MEM pipe stages can be saved. The PSWcurrent bits
are saved into PSWother, interrupts are turned off, and the machine is placed into system
mode. The exception handler saves the PC Chain and PSWother values before enabling
interrupts and PC Chain shifting. After the exception is resolved, the PC values are
restored in the PC Chain and three jumps are executed using the contents of the PC Chain
(jpers and two jpc instructions). Since exceptions occur infrequently, very little is lost
by not completing instructions that were in the pipeline before the exception point.

5.6.1 External Interrupts

Exceptions are also caused by external data transfer errors or internal computation faults.
External exceptions such as interrupts and page-faults are asynchronous events. An
interrupt input provides a maskable processor interrupt input for I/O devices requiring
service by the processor. It is normally driven independent of any external processor
transfer cycle. The same techniques used to synchronize asynchronous inputs to a
synchronous processor clock are used in STRiP. The interrupt input is synchronized with
STRiP's dynamic clock. Since a synchronous processor cannot respond to an interrupt
input during a stall condition or external transfer, the fact that the dynamic clock stops
during external cycles does not reduce the response time to an interrupt.

The non-maskable interrupt signal supports error detection based on an external
memory System transfer. Errors which can cause this exception include page-faults
(detected by the TLB), and parity checks and ECC errors (detected by the memory
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system controllers). The non-maskable interrupt has a setup time of Ons (same as data) to
the acknowledge signal driven by the communicating device. This allows the processor
to begin the exception handling routine during the next cycle and avoid any permanent
changes to the machine state. Therefore, the non-maskable interrupt does not require
synchronization since, by definition, it is synchronous with the end of an external
transfer. Data is discarded on prefetch cycles which cause an non-maskable interrupt and
the interrupt ignored. Memory faults caused by alternate bus masters (i.e. DMA) are
handled through a non-maskable asynchronous interrupt input.

5.6.2 Internal Exceptions

Internal exceptions are caused by overflow operations (trap-on-overflow) and trap
instructions. They occur synchronous to the pipeline sequencing. This allows them to be
accepted and serviced before the processor state is permanently changed. The trap-on-
overflow interrupt can be masked by setting a bit in the processor status word register.
When a trap-on-overflow occurs, another bit is set in the PSW. The exception handling
routine must check this bit to see if an overflow is the cause of the exception.

Trap instructions operate in the same manner as those provided in the MIPS-X
implementation. The trap instructions are unconditional software interrupts which vector
the processor to a system space routine in low system memory. These are similar to the
software interrupts provided in the X86 processors from Intel. The trap instructions have
an 8-bit vector number which provides 256 possible trap addresses. These vectors, when
shifted by three bits, are address of the vector routines in low system memory. By
separating the vector addresses by eight instructions, a short routine is used to provide a
jump to the correct trap handler. Since handling of traps was not the main concern of our
research, we reference the reader to Chow's book [Chow89] for more details on trap
instructions and trap handlers.

5.7 Performance Analysis

To analysis the functionality and performance of STRiP's dynamic clocking structure, a
SPICE model was generated to match the physical layout characteristics of the clock
distribution network. The MIPS-X clock distribution network parameters were used as a
model for analyzing the feasibility of a dynamically clocked RISC pipeline. Figure 5.21
is a block diagram of the SPICE simulation model used during our analysis. All clock
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network loads and wire lengths were based on the layout results of the MIPS-X pipeline.
Signal quality, tracking cell selectability and performance, cycle-to-cycle symmetry and
stability, clock skew, select feedback delay, and performance under worst-case
conditions were a few key parameters analyzed during the study. The select feedback
signals were sequenced to provide a mix of cycle lengths, testing cycle-to-cycle
interactions. The majority of the analysis used a MOSIS 2.0um CMOS process model,
but 0.8um CMOS and BiCMOS process models were used to understand the scalability
and potential performance of a dynamic clocking structure.
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L1 Cache
Tracking Cell
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Figure 5.21: Dynamic clocking structure used during SPICE simulation.

Throughout the simulation analysis, no adverse effects caused by the dynamic
clocking structure were observed. Table 5.7 is a summary of the key parameters
measured during the simulation. The worst-case conditions of Vcc = 4.0V and Temp. =
125°C were chosen to provide an understanding of the tracking characteristics and
functionality of dynamic clocking under extreme operating conditions.
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2.0um CMOS 0.8um CMOS 0.8um BiCMOS
Measured Parameters typical | worse | typical | worse typical
case* case*

Gate delay, inverter with 0.9 1.75 0.45 0.80 0.35
fanout = 4, (ns)

Minimum cycle time (ns) 15.0 27.0 7.5 14.5 5.5
Branch cycle time (ns) 21.0 35.5 10.5 19.0 8.0

L1 Cache cycle time (ns) 40.0 72.0 18.5 32.5 15.0

g1 period (ns) 7.0 12.6 3.5 6.3 3.0
Clock Gen. to selects (ns) 6.5 11.8 3.0 54 3.0
Clock startup time (ns) 7.0 12.6 3.5 6.5 2.5
C-element delay, min., (ns) 1.47 0.68 0.53

High level output voltage 5 4 5 4 4.25

Low level output voltage 0 0 0 0 0.75
Effective clock rate (MHz) 63 35 120 65 175

*Worse case conditions -- Vcc = 4.0V, Temperature = 125°C, Process = nominal

Table 5.7: Performance parameters measured during SPICE simulation of dynamic
clocking structure.

PERCENT | CONTRIBUTING ATTRIBUTE
75% Not requiring worse-case operating frequencies
under nominal operating conditions.
25% Matching the requirea pipeline period to the
pending operations.
50% (peak) | Using an asynchronous external interface.
125% Using the high-speed static adder, 3-port register
file, and fully-addressable prefetch buffer.

Table 5.8: Estimated performance improvement, over MIPS-X, attributed to dynamic

clocking and the use of high speed functional units.

The dynamic clock generator drives the clock distribution network the same way the
synchronous, static-frequency clock generator used in MIPS-X drove the identical
network. The main difference in these two methods is the way the clock is generated.
The drivers used to drive the global and local clock signals are structurally identical
(except in the BICMOS case). Therefore, the global- and local-clock signal quality and
the response characteristics were much the same as those found in the MIPS-X
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implementation. The use of dynamic clocking did not adversely affect the drive quality
of the clock signals.

The main advantage of dynamic clocking is the ability to allow the processor
operating rate to be as fast as the silicon can support. This capability allows a
dynamically clocked processor to operation approximately 100% faster than an
equivalent synchronous processor implementation. STRiP's typical operating rate is
three times faster than that achieved by MIPS-X using the same 2.0um CMOS process.
Table 5.8 list the elements in the STRiP design which provide performance benefits over
the MIPS-X implementation and the amount of performance each contributed.

The design of a dynamically clocked processor requires more detailed analysis than
for an equivalent synchronous processor design. There are three main design constraints
which must be addressed during the development process. The first is to guarantee that
the propagation delay of the tracking cells match the processing delays of the targeted
functional operations. If the tracking cells are built as described in this chapter, their
accuracy should not be a serious problem. Tracking cells are also commonly used in
self-timed PLAs, SRAMs, DRAMs, and floating point units. Therefore, their
construction and reliable operation have been demonstrated in commercially available
chips.

The second difficulty in dynamic clock design is the determination of which critical
logic paths are most frequently used and dominate the data processing patterns in the
processor pipeline. This determination drives the decision of which logical operations to
tracked. There are commercially available simulation and diagnostic tools which can
assist in this analysis. Not all RISC processors are like MIPS-X; some would probably
require a different set of tracking cells in a dynamically clocked implementation.

The last major constraint in the dynamic clock generator design is the response time
of the functional units which control the select inputs. This response time determines the
width of the gl period. Our goal was to provide a response time which was less than half
the minimum cycle time of the pipeline. Since the response time depends on the clock
distribution network, care must be taken to fully evaluate all parameters which affect the
select signals. Since MIPS-X had already been built, these parameters were relatively
easy to generate. Figure 5.22 shows the relationship between the output of the clock
generator and the select input created by the simulation model. This plot is
representative of the select signal response for all technologies simulated. Note that the
select setup time to the rising edge of the clock is approximately 0.5ns. This proved to
be enough to provide reliable clock generator operation under all possible conditions.
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Figure 5.22: SPICE plot of clock generator output and select feedback delay.

Summary

5.8

This chapter provided an understanding of the effects dynamic clocking has on the

The efficiency of a self-timed RISC

processor, STRiP, is compared with it synchronous equivalent, MIPS-X. From our
analysis, dynamic clocking utilizes the available silicon performance without reducing
the system reliability or increasing the processors complexity. Dynamic clocking also

operation and design of pipeline structures.
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allows the use of a fully asynchronous external interface, providing efficient data transfer
independent of the processing rates of the communicating devices. A self-timed
processor design using dynamic clocking requires a more detailed design analysis than
does an equivalent synchronous implementation. But by allowing the processor's cycle
time to vary with process, voltage, temperature, and pipeline operations, 100% more
performance is achievable under typical operating conditions.



Chapter 6

Conclusions

We have shown that a self-timed synchronous sequencing method, called dynamic
clocking, can more than double the performance of modern RISC processors by
extracting silicon performance which is not accessible through conventional sequencing
methods. While synchronous operation of the internal pipeline and external interface
simplifies a processor's implementation and sequencing, worst-case design constraints
restricts a processor from taking full advantage of the available silicon performance.
Self-timed systems provide an atiractive alternative, but suffer from complex logic
structures and sequencing overheads. Dynamic clocking combines the simple and
efficient sequencing structures of synchronous design with the adaptive operating and
interface attributes of self-timed systems.

Our research first investigated the structures used in modern processor design to
understand their advantages and constraints (Chapter 2). Because synchronous structures
are sequenced based on worst-case operating conditions, they are restricted to
approximately 55% of the silicon performance under nominal operating conditions.
Asynchronous logic structures adapt with changes in operating conditions and provide a
efficient device interface, independent of the communication rates of the devices. But
dual-rail encoding of logic variables to provide completion detection increases the
complexity of an asynchronous implementation. This complexity, along with sequencing
overheads caused by completion signalling, significantly reduce the performance and
increase the design time of traditional asynchronous structures.

The study of contemporary processor pipeline characteristics showed that lock-step
operation of a processor's pipeline is efficient if the cycle-by-cycle sequencing is based
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on the present environmental conditions, process parameters, and pipeline operations.
But synchronous communications between external devices limits the interface efficiency
of devices with different operating rates or access methods. A fully asynchronous
external interface would allow the interconnection of devices independent of their
processing rate. This led to the formulation of the dynamic clocking concept and the
definition of a self-timed RISC processor architecture (STRiP).

Dynamic clocking, as described in Chapter 3, is best defined as a self-timed
synchronous pipeline sequencing method. It allows adaptive lock-step sequencing of the
processor's pipeline and a fully asynchronous external interface. The logic structures
used in a dynamically clocked pipeline are identical to synchronous logic structures, thus
avoiding the complexities of traditional self-timed structures. The dynamic clock
generator uses tracking cells, with select control, to create the required clock cycle for
each pipeline operation. The ability to instantaneously start and stop the clock supports
the fully asynchronous external interface without synchronization overheads or
metastable conditions. Our study shows that applying dynamic clocking to a typical
RISC processor (MIPS-X) doubles its performance under typical operating conditions.

To further optimize the processor's performance, Chapter 4 described an enhanced
memory system hierarchy. Most modern processor designs are limited by the average
access time of their memory systems. To eliminate this constraint, small (less than 256
bytes) low-latency caches were added to the memory hierarchy. An aggressive and
adaptive prefetching algorithm was created to minimize the small cache's miss rates.
Zero-level caching with predictive prefetching cuts the memory system'’s average access
time by more than 50%, removing the memory system from the pipeline's critical logic
paths. The addition of zero-level caches also avoided increasing the processor's CPI
rating, common when using pipelined caches.

Finally, a RISC processor optimized for self-timed sequencing via dynamic clocking
is described. STRIP (self-timed RISC processor) uses traditional functional unit designs
along with zero-level caches and predictive prefetching. Its implementation was
simulated in several silicon technologies. In a 0.8um CMOS process STRiP has an
average sequencing rate of 120MHz. When compared to an equivalent synchronous
processor built in the same technology, STRiP provides twice the performance in a
typical operating environment. The fastest technology tested was a 0.8um BiCMOS
process, which yielded a average sequencing rate of 175MHz.

Additional research and development work is required to verify and optimize the
operation of a dynamically-clocked processor. Building an actual working processor
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would reveal the feasibility and constraints of dynamic clocking. Also, applying
dynamic clocking to other processor architectures would provide a better understanding
of its general usability. We have briefly considered the effectiveness of dynamic
clocking on a Superscalar or Superpipelined architecture. We believe both of these
architectures can benefit from the use of dynamic clocking, but more detailed studies are
required. Also, further studies are needed to understand the interaction of multiple on-
chip dynamically-clocked devices. For example, the interaction of a processor with a
floating-point unit, both operating asynchronously to each other and both using dynamic
clocking. As for further research in predictive prefetching, we did not evaluate the
possibility of storing and using a history of data reference strides to predict future data
references. Used in combination with the data reference history, stride prediction could
significantly reduce the average access time for data references.

Dynamic clocking appears to be a feasible and efficient method of sequencing a
processor pipeline. By providing self-timed adaptability and simple design constraints,
dynamic clocking promises double the performance of a traditional processor
architecture without significantly increasing its complexity.



Appendix A

Memory System Terminology

One difficulty with the existing literature on caches is inconsistent and conflicting
terminology. This thesis employs the terminology S. A. Przybylski adopted in his study
of cache and memory hierarchy design. The following is a list of terms and their
definition:

Internal and External:
Internal will refer to a logic structure which resides on the processor chip.
External refers to a logic structure which is implemented off the processor chip or
whose interface must cross the processor chip's interface pins.

Word:
A word is defined to be 32-bits or 4-bytes.

Cache:
A cache is a small memory subsystem that at any one time can hold the contents
of a fraction of the overall memory of the machine. The main purpose of a cache
is to provide a fast local storage of the most recently and most frequently
accessed data and instruction references. Their are several good references which
detail the fundamentals and theory behind cache design and usage (see Chapter
2).

Zero-Level Cache:
A fully-addressable prefetch buffer which is place between the CPU and the first-
level cache. A zero-level cache is very small (less than 64 words), fully
associative, and would normally utilize a prefetch strategy to minimize its miss
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rate. The STRiP architecture contains a zero-level instruction cache and a zero-
level data cache.

First-Level Cache:

Also called the primary cache. In most system structures it would be the first
storage layer in the memory system hierarchy. Most advanced processor chips
contain internal first-level caches which range in size from 1K words to 4K
words. In the STRiP architecture the first-level caches, instruction and data, are
the second layer in the memory hierarchy.

Second-Level Cache:

In a multi-level cache hierarchy, the second-level cache lies beyond the first-level
cache. It can range in size form 16K words to 512K words. Second-level caches
are typically implemented using discrete SRAMs. These caches are also known
as secondary caches.

Main Memory:

Block:

Main memory is the memory subsystem placed beyond any cache in the system.
Often considered the last level in the memory hierarchy (if the magnetic media
storage is not counted as a level). The main memory in most microprocessor
systems in made up of DRAMs and ranges in size form 256K words to 256M
words.

Also commonly called a line, a block is the minimum unit of information that is
directly addressable in the cache. Each block has an address tag. The block size
can range from one word to 32 words. A block may be divided into sub-blocks if
the cache fetch size is smaller than the block size.

Tag:
A cache tag is a unit of storage which defines the main memory address of a
stored unit of data. The tag indicates which portion or block of main memory is
currently occupying a cache block.

Fetch and Prefetch Size:

The amount of memory that is fetched or prefetched from the next level in the
memory hierarchy. A data fetch occurs only when requested by the CPU while a
data prefetch is generated independent of the CPU’s operation and attempts to
fetch data ahead of a CPU's request for it. Fetch size is also known as the transfer
size and sub-block size.
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Fetch and Prefetch Strategy:
The algorithm for deciding when a fetch of some data from the next level in the
memory hierarchy is going to be initiated, which address is to be fetched, and
which word or group of words is to be returned first.

Replacement Strategy:
The algorithm for choosing which block will receive a newly fetched block of
data. The most common replacement strategies are Random and Least Recently
Used (LRU).

Set-Associativity:
A set is a collection of two or more blocks which are addressed and checked in
parallel. If there are n blocks in a set, the cache is called n-way set-associative.
If there is one block per set (each block has only one place it can appear in the
cache) the cache is called direct-mapped. The cache is fully associative if the
cache is made up of one set (a block can be placed anywhere in the cache).

Hit or Miss:
A hit occurs when the requested memory address is found in a cache. A miss
occurs when the requested memory address is not found in the cache.

Write Strategy:
The write strategy, or policy, is all the details of how writes are handled in a
cache. There are two basic write-hit options: (1) a write-through policy where the
information is written to both the cache block and the next level in the memory
hierarchy and (2) a copy-back or write-back policy where the information is
written only to the cache block. There are also two options on a write-miss: (1) a
write-allocate policy loads the block from the next level in the memory hierarchy
and than performs the write-hit policy and (2) a no-write-allocate policy does not
modify the cache on a write miss and only writes the data to the next level in the
memory hierarchy. The write-hit and -miss strategies combine to form the
cache's write policy. The most common write policies are copy-back write-
allocate (CBWA) and write-through no-write-allocate (WTNWA).

Spatial Locality:
Given a memory location is referenced, there is a high probability that
neighboring locations will be referenced within the program's lifetime.
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Temporal Locality:
Given a memory location is referenced, there is a high probability that it will
referenced again within the program's lifetime.

Instruction Sequentiality:
Given a instruction reference from memory location n, there is a high probability
that the next instruction reference will be to memory location n+1. This is a
subset of the spatial locality property but contributes significantly to the
effectiveness of the prefetch strategies described later in this chapter.
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Signal Naming Convention

The naming convention used for STRiP's signal names was identical to that used by
MIPS-X designers. The main purpose of defining a naming convention early in the
design process is to guarantee some consistency in signal labels. Signal labels should
also convey information on the functional significants and active sense of a signal.

A signal name is make-up of three parts; the signals functional name, its active sense,
and the signal type. The format of the signal name is SignalFunction_Sense_Type. The
signals functional name provides information on the control/data conducted by the signal
wire (TakeBranchk, ReadWordLine, ResultBus, ...). If a signal is active "high", the
"_Sense" part of the signal name is omitted. An active "low" signal or a signal which has
been complemented uses a "_b" in the "_Sense" section of the signal name. An example
of this would be ResultBus_b. The "_Type" section of the signal name is defined as
follows:

) Stable g1

_s2 Stable g2

vl Valid ¢1

v2 Valid g2

_ql Qualified g1

92 Qualified g2

_dc DC signal

_wl Weird ¢1 (all signals types occurring during g1 which cannot be

define by one of the above g1 signal types)
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w2 Weird @2 (all signals types occurring during ¢2 which cannot be
define by one of the above @1 signal types)

w Weird (all signals types occurring asynchronously to the phases of
the clock)

A stable signal is defined to be constant throughout the specified phase. A valid
signal can change state during the specified phase but is guaranteed to be constant before
and during the falling edge of that phase. A qualified signal is created by logically
ANDing a signal with a clock, which is active high on the specified phase. If a signal
can be associated with a pipeline stage, a letter is appended to the end of the signal type:

IF pipeline stage
RF pipeline stage
ALU pipeline stage
MEM pipeline stage
WB pipeline stage

LT

T § & ™

An example of some signal names are: TakeBranch_b_s2a, ResultBus_b_v2a, or
IncDrvResBus_q2.
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SPICE Parameters

The following SPICE model cards were used during STRiP simulations. They were
chosen as representative of generally available silicon processes used for manufacturing
commercial microprocessors. Typical environmental conditions used during simulation
were Vcc = 5.0V and Temp. = 25°C. Worse case environmental conditions used during
simulation were Vcc = 4.0V and Temp. = 125°C.

SPICE model cards for NMOS and PMOS transistors representing a 2.0um MOSIS
CMOS process (typical). Data courtesy of Mark Horowitz, Stanford University.

*

*

.MODEL NT NMOS (LEVEL=2

+LAMBDA=1.99147%-2 LD=0.115U0 TOX=423E-10
+NSUB=1.0125225E+16 =~ VT0=0.822163 KP=4.893760E-5 GAMMA=0.47
+UEXP=5.324966E-3 PHI=0.6 U0=599.496 CRIT=12714.2
+DELTA=3.39718E-5 VMAX=65466.1 XJ=0.55U RSH=0
+NFS=5.666758E+11 NEFF=1.0010E-2  NS§S=0.0 TPG=1.00
+CGS0=0.9388E-10 CGDO=0.9388E-10 CJ=1.4563E-4

+MJ=0.6 CISW=6.617E-10 MISW=0.31)

*

.MODEL PT PMOS (LEVEL=2
+LAMBDA=4.921086E-2 LD=0.18U TOX=423E-10
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+NSUB=1.421645E+15

+UEXP=0.142293
+DELTA=1.0E-6

+NFS=4.744781E+11
+CGS0=1.469E-10

+MJ=0.5

*

*

136

VTO=-0.776658 KP=1.916950E-5 GAMMA=(.52
PHI=0.6 UO0=234.831 UCRIT=20967
VMAX=34600.2 XJ=0.50U RSH=0
NEFF=1.0010E-2  NSS=0.0 TPG=-1.00
CGDO=1469E-10 CJ=2.4E-4

CISW=3.62E-10 MISW=0.29)

SPICE model cards for NMOS and PMOS transistors representing a 0.8um CMOS or
BiCMOS process (typical). Data courtesy of Mark Johnson and Norm Jouppi during
EE371, "Advanced VLSI Design", at Stanford University, Spring quarter, 1990.

*

*

.MODEL NT NMOS (LEVEL=3

* + + + + + 4+

VTO=0.77
VMAX=2.7TE5
PHI=0.90
CJ=6.24E-4
PB=0.80
LD=0.0001U

TOX=1.65E-8
THETA=0.404
NSUB=8.8E16
MIJ=0.389
CGSO=2.1E-10
RSH=0.50)

.MODEL PT PMOS( LEVEL=3

* + + 4+ + + +

*

VTO0=-0.87
VMAX=0.00
PHI=0.90
CJ=6.5E-4
PB=0.80
LD=0.0001U

TOX=1.65E-8
THETA=0.223
NSUB=9E16
MJ=0.42
CGSO=2.7E-10
RSH=0.50)

U0=570
ETA=0.04
NFS=4E11
CISW=3.10E-10
CGDO=2.1E-10

UO=145
ETA=0.028
NFS=4E1l
CISW=4.0E-10
CGDO=2.7E-10

GAMMA=(0.80
KAPPA=1.2
XJ=0.2U
MISW=0.26
DELTA=0.0

GAMMA=(0.73
KAPPA=0.04
XJ=0.2U
MISW=0.31
DELTA=0.0
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SPICE model cards for bipolar transistors representing a 0.8um BiCMOS process
(typical). Data courtesy of Mark Johnson and Norm Jouppi during EE371, "Advanced
VLSI Design," at Stanford University, Spring quarter, 1990.

*

*

.MODEL b1.6 NPN
+is=le-18 ikf=4ma
+Re=50 Rc=400
+tf=15ps tr=400ps
+Cje=8fF Vje=0.9
+Cjc=8fF Vjec=0.5
+Cjs=30fF  Vjs=0.5
+nf=1.0 Eg=1.20
*

*

bf=100
Rb=800

mje=0.3
mjc=0.2
mjs=0.3
nc=1.5

br=20

xcjc=0.5

Vaf=25 Var=3V

fc=0.5



Appendix D

STRIiP's Instruction Set

D.1 Instruction Set Architecture

Since STRIP is based on the MIPS-X architecture, it has a 32-bit data flow between
datapath units and uses a simplified instruction set (relative to other commercial RISC
processors). The instructions are grouped into four instruction formats. Figure D.1
shows the bit-fields used in each instruction format. There are 10 memory instructions
(including coprocessor/FP processor transfer instructions), 12 branch instructions, 17
compute instructions, and seven compute immediate instructions. Table D.1 and D.2
lists the STRiP (MIPS-X) instructions. The use of simple, small, and therefore fast
hardware structures optimize the pipeline's performance while providing more area for
other features which maximize the performance of the processor (caches).

STRIP, like MIPS-X, uses a traditional five-stage pipeline. Results generated during
the ALU processing stage are not written to the Register File until the final pipeline cycle
(WB), simplifying exception handling. Bypassing is used to provide result data to
instructions occurring before WB. The results of a load instruction cannot be bypassed
to the ALU stage of the next sequential instruction, a load delay of one cycle is required
between a load instruction and the next instruction using that load data. The software
must fill the load-delay slot (the next sequential instruction after a load instruction) with
an instruction which is independent of the load data.
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Memory
0 12 45 910 14 15 31
| 10 ] oP | SRC1 [DEST/SRC2| Byte Offset

Branch
0 12 45 9 10 14 15 16 31
l oo | op | SRCl1 | SRC2 |sql Word Displ.

Compute
0 12 45 9 10 14 15 19 20 31
l or | op | SRCl | SRC2 | DEST | Compute Function

Compute Immediate

0 12 45 9 10 14 15 31
] 11 ] op | SrRClI [ DEST | Immediate Field

SRC1, SRC2 = source specifiers for Register File read-ports. Byte Offset = load/store offset from SRC1
DEST = destination specifier for Register File write-port. ~ Word Displ. = branch displacement from
PC

OP = operation specifier within instruction group. Compute Func. = encoded computation
Sq = squashing specifier for branch prediction Immed. Field = immediate data field

Figure D.1: The STRiP (MIPS-X) instruction formats.

Instruction Operands Operation Comments

Memory Instructions (including coprocessor/FP processor transfers)

Id X[SRC1).DEST DEST:=M[X+SRC1] Load

st X[SRC1],SRC2 M([X+SRC1]:=SRC2 Store

1df X[SRC!]FDEST FDEST:=M[X+SRC1] Load floating-point

stf X[SRCI],FSRC2 M[X+SRC1}:=FSRC2 Store floating-point

1dt X[SRC1},DEST DEST:=M[X+SRCI] Load through - bypass caches
stt X[SRC1].SRC2 M[X+SRC1}:=SRC2 Store through - bypass caches
movfrc Coplnstr, DEST DEST:=CopReg Move from coprocessor
movtoc Coplnstr.SRC2 CopReg:=SRC2 Move to coprocessor

aluc Coplastr Cop exccute Coplnstr Send/Exe. coprocessor instr.
aluf FPlnstr FP Unit execute FPInstr Send/Exe. floating-point instr.
Branch Instructions

teq.begsq SRC1.SRC2,Displ. PC:=PC+Displ. if SRC1 = SRC2 Branch if equal

bge,bgesq SRC1,SRC2,Displ. PC:=PC+Displ. if SRC1 2 SRC2 Branch if greater or equal
bhs,bhssq SRC1,SRC2,Displ. PC:=PC+Displ. if SRC1 2 SRC2 Unsigned branch if higher or same
blo,blosq SRC1,SRC2,Displ. PC:=PC+Displ. if SRC1 <SRC2 Unsigned branch if lower
blt.bitsq SRC1,SRC2,Displ. PC:=PC+Displ. if SRC1 < SRC2 Branch if less

bne,bnesq SRC1,SRC2,Displ. PC:=PC+Displ. if SRC1 # SRC2 Branch if not equal

Table D.1: STRiP (MIPS-X) Memory and Branch instructions.
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Instruction Operands Operation Comments

Compute Instructions

add SRC1,SRC2,DEST DEST:=SRC1 + SRC2 Integer add

dstep SRC1,SRC2,DEST One step of 1-bit restoring divide
algorithm

mstart SRC2,DEST First step of 1-bit shift and add
multiplication

mstep SRC1,SRC2,DEST One step of 1-bit shift and add
muitiplication

sub SRC1,SRC2,DEST DEST:=SRC1 - SRC2 Integer subtraction

subnc SRC1,SRC2,DEST DEST:=SRC1 + SRCZ_b Subtri.ct with no carry in

and SRC1,SRC2,DEST DEST:=SRC1 A SRC2 Logical AND

bic SRC1,SRC2,DEST DEST:=SRCI_b A SRC2 Bit clear

not SRC1,.DEST DEST:=SRCI_b Logical INVERT

or SRC1,SRC2,DEST DEST:=SRC1 v SRC2 Logical OR

xor SRC1,SRC2,DEST DEST:=SRC1 @ SRC2 Logical Exclusive-OR

mov SRC1,DEST DEST:=SRC1 Really just "add SRC1,r0,DEST"

ast SRC1,DEST#N DEST:=SRC1 shifted right N Arithmetic shift right

positions

rotlb SRC1,SRC2,DEST DEST:=SRC1 byte rotated left Rotate left by SRC2[30:31] bytes

roticb SRC1,SRC2,DEST DEST:=SRCI byte rotated left Rotate left by complement of
SRC2[30:31) bytes

sh SRC1,SRC2,DEST#N DEST:=SRC2[32-N:31} Il Funnel shift

SRC1[0:32-N-1j

nop 10:=10 + r0 No operation. Really just "add r0,r0,r0"

Compute Immediate Instructions

addi SRC1.#N.DEST DEST:=N + SRC1 Add immediate 17-bit sign extended

jpc Jump using value in PC Chain. Used to
return from exception handler.

jpers Jump from PC Chain and restore state.
Used to return from exception handler.

jspei SRC1 #N,DEST DEST:=PC+1,PC:=SRC1 + N Jump indexed, save PC

movfrs SpecReg,DEST DEST:=SpecReg Move from special register (PSW, PC-4,
PC-1,MD)

movtos SRC1.SpecReg SpecReg:=SRC1 Move to special register (PSW, PC4,.
PC-1,MD)

trap Vector Trap to vector (256 vector addresses,
cight words per vertor, located in low
memory)

Table D.2: STRiP (MIPS-X) Compute instructions.

The results of a branch-instruction comparison is not known until the end of the ALU
pipeline cycle. Before the resulting branch operation is known (taken or not-taken), two
more instructions have been fetched and are in their RF and ALU pipeline stages. These
instructions reside in the branch-delay slots for that branch instruction. To increase the
probability of finding useful instructions to fill STRiP's two branch-delay slots,
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squashing versions of the branch instructions are provided (begsq, bgesq, bhssq, blosq,
bltsq, and bnesq). These branch instructions make it possible to statically predict that the
branch will be taken. If the branch is not taken, the instructions in the delay slots are
squashed or cancelled. Since the ALU is used to compute jump addresses, the jump
instruction also has two delay slots.

There are several unique instructions/operations which need further explaination.
Data moves to external coprocessors, or tloating-point processors, occur during the WB
pipeline cycle (unlike other memory store operations which occur during the MEM
pipeline cycle). The instructions included in this group are movroc, aluc, ldf, and aluf.
Holding-off the data transfer until the write-back cycle allows the MEM stage of the ldf
instruction to be used to access the internal memory system. Data moves from external
processors (movfrc and stf) use the ALU pipeline stage to execute the external transfer.
This allowed the MEM and WB pipeline stages to be used for the data store and register
write-back operations. Since the external processors execute asynchronously to STRiP's
pipeline sequencing, performing external processor transfers in this manner guarantees
precise exception handling for the scalar pipeline.

Multiplication is done with the simple 1-bit shift and add algorithm except that the
computation is started from the most significant bit instead of the least significant bit of
the muitiplier. The instruction that implements one step of the algorithm is called mszep.
For signed multiplication, the first step is different from the rest. If the most-significant-
bit of the multiplier is 1, the multiplicand should be subtracted from 0. The instruction
called mstart is provided for this purpose. Division is done, 1-bit at a time, by using a
restoring division algorithm. Both operands must be positive numbers. The dstep
instruction implements one step of the algorithm. For more details on multiplication and
division in the MIPS-X architecture see Chow's book on the MIPS-X processor
[Chow89].

STRiP's memory space is identical to MIPS-X. The addressing is consistently Big
Endian [Cohen81]. The memory space is composed of 32-bit words. Load/store
addresses are manipulated as 32-bit byte addresses, but only words can be read from
memory. Only the most significant 30 bits are sent to the internal memory system.
Since byte data can not be directly accessed, an instruction sequence is required to insert
or extract bytes from a word. Instructions that affect the program counter (branches and
jumps) generate word addresses. Offsets used to calculate load/store addresses are byte
offsets, while displacements for branches and jumps are word displacements.
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D.2 Processor Status Word

The PSW consist of two set of bits, PSWcurrent and PSWother. When an exception or
trap occurs, the current machine state (PSWcurrent) is copied to PSWother so that it can
be saved. Interrupts, PC shifting, and overflow exceptions are disabled and the processor
is placed in system state. A jpcrs instruction (jump PC and restore state) causes
PSWother to be copied back to PSWcurrent, restoring the machine state to its pre-
exception values. 4

The PSW bit assignments match those used in MIPS-X and is shown in Figure D.2.
The upper case bits correspond to the PSWcurrent data bits and the lower case bits
correspond to the PSWother data bits.
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0

7 8 15 16 23 24 31

lutuiotol 1

t ] 1t 1 1diDIfIF] 1 | IEIEIEIEle] viVImIMIillisIS]

Byte 0

Byte 1 Byte 2 Byte 3

The PSW bits are defined as follows:

M, m
U,u

V,v
Q,0

F,f

This bit is set to 0 when there is an interrupt request, otherwise it is a 1.
Interrupt mask bit. When set to a 1 the processor interrupt is masked.
Processor state bit. When 1 the processor is in user state, when 0 the
processor is in system state. It can only be changed by a system process,
interrupt or trap instruction.

When set to 1, shifting of the PC Chain is enabled.

Cleared when doing an exception or trap return sequence. Used to
determine whether state should be saved if another exception occurs
before the completion of the return sequence (three jump instructions).
The E bits make up a shift chain that is used to determine whether the e
bit needs to be cleared when an exception occurs.

The overflow mask bit. When set, trap on overflows is masked.

This bit gets set on an overflow exception and is cleared on all other
exceptions.

The internal instruction cache enable bit. When set, the internal
instruction caches are disabled. This bit can only be changed by a system
process.

The internal data cache enable bit. When set, the internal data caches are
disabled. This bit can only be changed by a system process.

Figure D.2: The Processor Status Word (PSW).
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C-element Logic Diagrams
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Figure E.1: 4-input C-element implementation using cross-coupled NORs.



Appendix E: C-element Logic Diagrams 145

Reset c‘,g‘l

D—«-:{E-Ir J

C— q

B 4
A Reset A
g | 4x
Dgl: Q ® EQ

4 —{ Ix

A— A — —
B B B
C C— i

D %'lj i

1

All transistors are 2x minimum size unless
specified.

@ ®)

Figure E.2: 4-input C-element implementations using majority function circuits.
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Figure E.3: 4-input C-element using pseudo-NMOS logic structure.
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Figure E.4: 4-input dynamic C-element.
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Figure E.5: 4-input dynamic C-element tree using 2-input dynamic C-elements.
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Reset

All transistors are 4x minimum
size unless specified.

Figure E.6: 4-input dynamic C-element with charge-sharing reduction circuitry.
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External Interface Signal Descriptions

Cost, size, and availability were key factors in the determination of the number of
interface signals used. The target module configuration was a Quad Flat Pack (plastic or
metal) containing 240 pins [LSI Logic]. The QFP modules are less expensive and make
more efficient use of board space than the Pin Grid Array (PGA) modules commonly
used for microprocessors. The use of the plastic (PQFP) or metal (MQUAD) QFP will
depend on the projected power dissipation and the amount of cooling required to
optimize performance. It was determined that 25% of the pins were needed for power
and ground. The remaining pins could be used for communication, testing, or
configuration signals. The following is a a brief functional description of STRiP's

module pins:

Power and Ground:
Vee (27 pins) - 3.3V or 5.0V nominal (depending on the technology)

GND (27 pins)- Ground

Processor Address and Data Buses:

Address[0-31] - The processor's address bus is made up of 32 tri-state output signals.
HoldAck_b low will tri-state the address bus to allow other bus masters to drive
the bus (supports snooping and local shared memory MP). STRiP transfers
information word or quad-word (cache line) aligned. Since the internal data
cache is copy-back, all writes to external system memory are a cache-line wide
(128-bits). The least significant address bits, Address(28-31], are encoded to
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indicate the targeted memory address and transfer size. Table F.1 gives the
encoding scheme used. The address bus is also used to transfer coprocessor
selects for movtoc, movfre, and aluc instructions, and floating-point register
selects during Idf, stf, and aluf instructions. Addressy, along with Read/Write_b

and FPAccess_b, are used to distinguish between the different coprocessor

transfers. Table F.2 gives the encoding for each coprocessor and processor
transfer.
Address[28-31] Requested transfer size Active Data Bus Signals
1110 word Data[96-127]
1101 word Data[64-95]
1011 word Data[32-63]
0111 word Data[0-31]
0000 quad-word Data[0-127]

Table F.1: Encoding of least significant address bits to support word and guad-word

Data[0-127] -

transfers

STRiP's data bus supports cache line transfers, coprocessor

instruction/data transfers, and the capability of two double-precision floating-
point data transfers in a single cycle (not defined in the present instruction set).
The availability of a 128-bit data bus provides a significant amount of interface
performance, while still supporting a low cost package. Data[0-127] are outputs
during write transfers from the processor and inputs during processor read cycles.
The data bus is tri-stated when ever HoldAck_b is active and DBEnable_b is
inactive. STRIiP also uses the data bus, when DBEnable_b is active during an
external processor cycle, to provide dirty-line data during memory transfer cycles
from other system processors (HoldReq_b, HoldAck_b, MemReq_b, MemAck_b,
Miss, Read/Write_b, and DBEnable_b are low, indicating a write-snoop-hit of an
internal dirty-cache-line).

Memory Control:
MemReq_b

- MemReq_b is an 1/O signal which allows the processor to transfer data

to/from memory devices and keep internal caches coherent. The processor drives
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MemReg_b when the BIU has a pending load/store operation to non-cachable
system-memory space or cachable-memory space which was not present in the
second-level cache. As an input, when HoldAck_b is active, the processor
monitors MemReq_b along with Read/Write_b to determine the type of system
memory transfer generated by another system processor. This allows STRiP to
snoop its internal cache to maintain memory coherency.

MemAck_ b - MemAck_b is an input signal that indicates when the externally
addressed device has driven valid data on the data bus (read) or has accepted data
from the data bus (write). Once MemAck_b is received, the processor's pipeline
can be released (if stalled because of data dependencies).

Read/Write_b - Read/Write_b is an output when the processor controls the bus
(HoldAck_b inactive) and an input during external processor cycles (HoldAck_b
active). This signal indicates the memory transfer type and sets the data bus
direction. Read/Write_b also designates the direction of a coprocessor transfer
(see Table 5.3).

CacheReq_b - When the processor is transferring data to/from cachable memory space,
it will drive CacheReq_b to request access to any external cache subsystems
(normally a second-level cache). If the external cache indicates a hit
(CacheAck_b active and Miss inactive) the processor continues processing. An
external cache-read-miss (CacheAck_b and Miss active) will cause the BIU to
generate an memory request to transfer the data from memory. With the internal
data cache in copy-back mode, all external transfers to cachable memory space
will be 128-bits wide. Therefore, a second-level-cache write miss cycle can
immediately write the new line data into the cache (displaced dirty lines are
written back on subsequent cycles). CacheReq_b, along with CacheAck_b and
Miss, allows easy support of an optional second-level cache.
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Memkeg_b Cackekegb CapReg__;b FPAccess_b Read/Write_b Address0 Transfer T_me_
l 1 1 1 0 X Non-Cachable
Memory Write
J 1 1 1 1 X Non-Cachable
Memory Read
1 d 1 1 0 X Cachable
Memory Write
1 d 1 1 1 X Cachable
Memory Read
d 0 1 1 1 X *Cachable
Memory
Read/Write,
L2 Cache Miss
1 1 d 1 0 1 movioc instr.
1 1 ~L 1 0 O aluc instr,
1 1 ~L 1 1 1 movirc instr.
1 1 ~L 1 1 0 (unused code)
1 1 d 0 0 1 1df instr.
1 1 d 0 0 0 **aluf instr.
1 1 l 0 1 1 atf instr.
1 1 d 0 1 0 (unused code)
* Assumes a copy-back L2 cache. L2 cache will not indicate a miss on a 128-bit write

cycle.

** New floating-point transfer instruction. Not provided in MIPS-X.

Table F.2: Processor signal encoding during external data transfers

CacheAck_b - CacheAck_b is an input and indicates when the external second-level
cache has driven the data bus with valid data (read) or has latched the data from
the data bus (write).

- Miss is an input, driven by the second-level-cache, and indicates the

results of the second-level-cache access. If Miss is active when CacheAck_b is

driven active, the second-level cache does not contain the data-address requested.

On a read-miss STRiP's BIU will generate a MemReq_b to request the data from

system memory. On a write-miss, the second-level cache must remove the data

from the data-bus before driving CacheAck_b active. The processor will ignore

Miss during write-miss cycles, since no further action is required. With the first-

level-caches in copy-back mode, a write to cachable memory space occurs only

when a dirty-line is being written-back.

Miss
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If Miss is high when Reset transitions from active to inactive (high-to-low
transition), this indicates to the BIU that a second-level-cache does not exist.
With no second-level-cache, the BIU will never drive CacheReq_b and will drive
MemReq_b for all memory system transfers (cachable or non-cachable). If Miss
is high when MemAck_b transitions low (indicating data available/accepted), the
memory address is non-cachable and will not be stored in the internal or second-
level caches.

SnoopCmplt_b- The processor uses SnoopCmplt_b to indicate the completion of an

internal snoop cycle. A snoop operation occurs when an external processor owns
the local bus (HoldReq_b and HoldAck_b active) and performs a memory transfer
(MemReq_b active). The processor will snoop the contents of its internal caches,
invalidate entries on a write-hit, and provide data on a hit to a dirty cache-line
(DBEnable_b active). Table F.3 gives the signal encoding for each snoop
response.

Exception Control:

Reset

- Reset is an input and resets the processor to a known initial state. The
internal caches are disabled and invalidated and the reset vector is placed on the
address bus (Address(0-31] = Ox7fffff80). Since the caches are disabled, the
processor will issue an external memory-read request to this address after Reset
goes inactive.

Interrupt - Interrupt is a maskable interrupt input signal. When an interrupt is

taken, it is necessary to save the PCs of all the instructions currently executing,
allowing restarting after the interrupt is serviced. Because there is a branch delay
of two, three PCs (instructions in RF, ALU and MEM stages) are saved in the PC

Chain.

Exception_b - Exception_b provides a non-maskable interrupt function to support

external events which need immediate attention (memory errors or bus time-out).
Exception_b has priority over Interrupt and an internal trap instructions.
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HoldReq b, HoldAck_b, MemReq b are active (low)

Read/Write_b Miss SnoopCmpls_b response
(input) (output) (output) description
0 1 14 WTile-Snoop-miss

or
write-snoop-hit to
clean cache line

0 0 J, * write-snoop-hit
to dirty cache line
1 1 J, read-snoop-miss
or
read-snoop-hit to
clean cache line |
1 0 i, * read-snoop-hit to

dirty cache line
* External processor must drive DBEnable_b low to receive dirty-line data from
processor.

Table F.3: Signal encoding for response to internal cache snoop operation

Coprocessor Control:

CopReq_b - CopReq_b is an output signal which when active, indicates a transfer
request to/from a connected coprocessor or floating-point processor. During a
coprocessor cycle, the address bus contains the coprocessor selects or floating-
point register selects, while the least significant data bus signals (Data[64-127])
provide the medium for instruction/data transfer. If FPAccess_b is active when
CopReq_b transitions to an active state (high-to-low transition), the transfer is
between the processor and floating-point processor. Read/Write_b and Addressg
indicate the type of coprocessor transfer (see Table 5.3).

CopAck_b - CopAck_b is an input signal, driven by the attached coprocessors, which
indicates the completion of a coprocessor data transfer. During a write t0 a
coprocessor (ldf, aluf, movtoc, or aluc instructions), the coprocessor drives
CopAck_b active to indicate data has been latch from the data bus. During
coprocessor read operations (stf or movfre) the coprocessor drives the same
signal, indicating valid data on the data bus.

FPAccess_b - This signal replaced the MIPS-X coprocessor signals FPReg[I-4] and
the use of MemCycle during coprocessor transfers. It was decided that all
floating-point data transfer would occur through the internal first-level cache.
Therefore, the floating-point instructions ldf and stf tranisfer data between the
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first-level data cache and floating-point processor. The floating-point register
address is driven on the least significant address bus bits (Address(27-31] to
support 32 floating point registers). FPAccess_b is also driven active during the
aluf instruction, with the data bus containing the floating-point instruction.
Another change made to STRiP's coprocessor interface (versus MIPS-X) is that
the transfer-too coprocessor cycles (1df, aluf, movtoc, and aluc) are not sent to
the BIU until the WB pipeline cycle. This eliminated the need for the WBEnable
signal to guarantee precise interrupts. The BIU also allows the processor to
continue processing, in parallel with the coprocessor transfer. transfer-from
coprocessor transfers (stf and movfre) occur during the ALU pipeline cycle and
stall the pipeline until the transfer is completed.

Bus Control/Access:

HoldReq_b - HoldReq_b in an input signal, driven active by other system processors
when they wish to access devices directly connected to STRiP's external interface.
This signal forces STRiP's BIU to tri-state the address and data buses, and
Read/Write_b signal when the BIU does not require the external bus. HoldAck_b
is driven active once the BIU has released the external interface. HoldReq_b not
only allows external processors to access processor complex devices, but it
provides a means to snoop the internal first-level caches and external second-level
cache.

HoldAck_b - Once the BIU receives a HoldReq_b active signal, HoldAck_b is driven
active once the external interface signals (Address[0-31], Data[0-127], and
Read/Write_b) are tri-stated.

DBEnable_b - The Data Bus Enable signal (DBEnable_b) signals the processor to drive
the external data bus during a external processor cycle to a local bus device
(HoldReg_b and HoldAck_b active). If a snoop cycle hits a dirty cache-line,
STRiP may be asked to provide that dirty data. When DBEnable_b is driven
active, the dirty cache-line is driven on to the external data bus.

BusReq_b - BusReq_b is driven by the BIU during external hold cycles (HoldReq_b
and HoldAck_b active) to indicated that the processor request control of the
external interface. This signal provides a means of processor sharing on the local
bus based on the immediate needs of each connected processor. BusReq_b can be
used to support a "fairness" protocol, providing equal access to all requesting

Processors.
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Test Signals:

TestClk - TestClk is an input signal which can be used to sequence STRiP's
pipeline when the dynamic clock generator is disabled (DynClkReset_b is active).

ScanClk - This clock input is used to scan test data to and from STRiP's internal

functional units when Reset is active.

DynClkReset - This input signals allows external test hardware to disable the dynamic
clock generator, providing a means to sequence STRiP's pipeline via an external
test clock (TestClk).

ScanDataln - ScanDataln is an input signal which enables test information to be
scanned into internal functional units (via ScanClk). ScanDataln must be driven
synchronously with respect to the scan clock.

ScanDataOut - ScanDataOut allows test results from scanned input data to be evaluated
by external hardware. ScanDataOut is driven synchronously by the processor
relative to ScanClk.

KNOB Ceontrol:
TCKNOB - This input is the control voltage for the tracking cell KNOB. TCKNOB

= OV allows the tracking cells to operate at their designed optimum delay. As
TCKNOB increases in voltage, the tracking cells increase in delay. TCKNOB =
5V increases the tracking cell delays to 1.5x their optimum delays.

PGKNOB - This input is the control voltage for the pulse generator KNOB.
PGKNOB = 0V allows the pulse generator to generate ¢l periods at their
designed optimum width. As PGKNOB increases in voltage, the pulse generator
output increases the width of g1. TCKNOB = 5V increases the g1 period to twice
its designed optimum width.
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