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Abstract

Mobile device photography is in the midst of a transformation: fixed processing

pipelines are being replaced by flexible and programmable image processors, and

single cameras are being replaced by clusters of sensors with diverse capabilities and

new modalities. However, the camera APIs for mobile operating systems rarely expose

the full capabilities of the hardware, because these capabilities depend on low-level

and real-time code or platform-specific hardware details.

This work introduces F4graph, an application model and software interface which

opens up many more capabilities of the imaging hardware to userspace applications.

Within F4graph, captures on multiple image sensors or other hardware can be linked

together to produce complex sequences of actions using a straightforward constraint-

based scheduling model. This model enables the user to specify only the constraints

that matter to the application, leaving freedom for the system to work around hard-

ware and occupancy constraints, and to share the hardware between applications. The

system provides strong guarantees by checking as many constraints as possible be-

fore committing actions to hardware and by only breaking constraints at well-defined

points. Additionally, F4graph allows the application to define the processing pipeline

along with the capture sequence, allowing image data to be streamed directly to a

reconfigurable image processor or other hardware. This includes the ability to stream

continuously, to process multiple images from a stream, and to create feedback cycles

for metering and similar applications.

This thesis also describes how F4graph can be implemented in a real system, using

a Xilinx Zynq Ultrascale board as a prototyping platform. Our demonstration system

uses the Zynq’s FPGA fabric as a reconfigurable image processing accelerator and its

iv



real-time core to orchestrate timing-critical events while the application processor

cores run a normal multitasking Linux OS. Using the F4graph API on our prototype,

userspace applications are able to schedule and execute actions with a temporal res-

olution under 20 µs — within a single image sensor scanline. The complexity of this

heterogeneous hardware system is managed by a build system which generates the

entire hardware/software stack from the application code and a short human-readable

system description file. This makes it possible to develop complete applications that

use precise capture sequencing and hardware-accelerated image processing without

the need to write platform-specific or real-time code.
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Chapter 1

Introduction

Photography today is dominated by mobile phones. As shown in Figure 1.1, mobile

phones have almost completely supplanted the point-and-shoot camera market over

the last decade. In 2017 over 1.5 billion mobile phones with cameras were sold, which

is roughly sixty times more than all other types of consumer cameras put together

[1, 2]. Even on Flickr — which caters to enthusiasts and professionals — the recent

iPhone models are the most popular cameras by a huge margin [3]. As the adage goes,

“the best camera is the one you have with you,” and mobile phones are seemingly

always at hand. The megapixel wars are long over, and given that the picture quality

on most mobile phone cameras is good enough for the casual user, the convenience of

a pocketable form factor and a large vivid touchscreen is hard to beat.

As a result, photography itself is changing. Mobile phones did not merely replace

point-and-shoot cameras; they opened up an enormous new market that now includes

more than half of the world population. With the ability to take an image anytime

and anywhere, cameras are used for all sorts of things, from capturing meeting notes

to depositing checks to sharing snaps of every meal on social media.

There are three consequences of this shift to mobile devices. First, due to the

thin form factors of mobile devices and the harsh realities of physics, mobile device

cameras have significantly worse imaging performance compared to dedicated cam-

eras. Although phone cameras have megapixel counts only slightly lower than their

larger SLR cousins (12MP for the iPhone 8 vs 20.9MP for Nikon’s D500 “flagship”

1
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Smartphones

Point-and-shoot
DSLR/Mirrorless

Figure 1.1: Global camera sales over the last decade. Data from [1, 2].

DSLR [4, 5]), the physical image sensors are smaller by a factor of four or five in each

linear dimension, meaning that the area of each pixel is smaller by roughly a factor

of 20. A pixel pitch of about one micron is typical for mobile phone sensors, while

SLR cameras using the APS-C sensor format have a pitch around 4µm [5].

The smaller pixel size has two drawbacks. At low light levels, fewer photons strike

each pixel as compared to a larger sensor, meaning that the gain must be increased

(leading to grainy images) or that the exposure must be longer (often leading to blur).

At higher light levels there are plenty of photons, but a small sensor’s electron wells

fill up more quickly, limiting the overall dynamic range that the sensor can capture.

The compact form factor and lower manufacturing costs also limit the optical

quality of mobile cameras. It is difficult to fit a lens with a wide aperture into the

tight space constraints of a mobile device, meaning that these cameras have a larger

depth of field and a less pleasing bokeh for close-ups and portraits. Moreover, the

optical components are simple and inexpensive relative to the glass assemblies used

in larger cameras, which increases optical aberrations such as radial distortion, color

fringing, and dark shading near the corners of the image.
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A second consequence of the shift to mobile phone cameras is that every camera

now comes with a computer attached, in the form of the phone’s processor. Compu-

tation has been necessary to correct for dead pixels and to produce full-color images

from the Bayer mosaic since the advent of digital cameras, but its role on mobile

devices has come front and center.

More and more, computation is used to offset the shortcomings described above:

denoising algorithms clean up grainy images in low light [6], and calibrated filters

warp and brighten images to correct lens aberrations. Capturing multiple images

and fusing them together for improved rendering of both light and dark areas of

the image (known as high-dynamic range imaging) is now standard [7]. And most

recently, synthetic blurs are being used to simulate the pleasing bokeh of lenses with

much larger apertures [8, 9].

But computation goes beyond making up for the limitations of the camera; it

is also used to enhance images and to provide entirely new capabilities. Automatic

panorama stitching makes it easy for novices users to capture 360-degree scenes [10].

Image “filters” add artistic effects, and various video effects (whether called “filters”,

“AR stickers” or “animoji”) analyze a live stream of images to create and overlay

virtual elements.

These examples are just the beginning of what computational cameras can and

will do. Today’s flagship phones are all flat slabs with ultra-high-resolution screens

covering the whole front face of the device, leaving cameras as one of the few exciting

areas for improved capabilities and market differentiation.

Computation will be used to further improve low-light performance, to compensate

for handshake, and to produce synthetic long exposures [11]. There are opportunities

to use two or more cameras together, whether for sensing depth, producing sharper

images, or capturing video for virtual reality. Augmented reality is in its infancy,

and will be a rich field for computational imaging. Depth sensors and other imaging

modalities are beginning to appear in mobile devices, and these will open even more

doors to compute with image data. In short, mobile device cameras are computational

cameras.

The third consequence of the shift to mobile devices is that cameras are now
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programmable. There is of course lots of software running inside a camera, but

they have traditionally been closed platforms, and the imaging algorithms that run

on them are tightly guarded secrets. Although several camera manufacturers have

recently released APIs for their cameras, these essentially provide a software interface

which replicates what is ordinarily done with physical controls on the camera [12, 13].

In contrast, the camera app on a mobile device presents physical controls as an in-

terface to the underlying software API. The camera app is simply another application

on the device, and it is easy for a developer independent of the device manufacturer to

write software to control the camera. Thanks to the robust app development ecosys-

tem, a developer can create a new application from scratch in a matter of hours and

experiment with ideas never conceived of by the original designers of the device. As

a result, both Android and iOS have dozens of third-party camera applications which

boast features not available in the stock camera applications.

Mobile operating systems also provide an extensive application distribution plat-

form. Traditional cameras typically have their algorithms “baked in”, and consumers

only replace them every few years. By contrast, apps can be installed and uninstalled

in a matter of seconds, and improvements can be delivered wirelessly by overnight

updates. Taken together, the availability of computation and the ease of developing

and distributing camera-based applications means that imaging on mobile devices is

a field ripe for continued innovation.

However, there are two impediments to further innovation and adoption of compu-

tational photography on mobile devices: access to powerful computational resources

and precise control of the camera pipeline. Said another way, mobile devices pro-

vide computational resources and software control of the camera, but emerging and

potential applications demand more of both.

We will first consider the challenge of computation. Processing a 1080p video

stream with 60 frames per second requires handling over 120 million pixels per second.

Performing even five or ten mathematical operations per pixel is sufficient to fully

occupy a CPU, to say nothing of the complex algorithms we would like to run. In

fact, applications such as Google’s HDR+ take several seconds to process a single

frame [7].
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The solution is to build specialized compute engines tailored to particular tasks.

For example, the process of converting raw pixels from the image sensor into a pre-

sentable image requires a few hundred operations per pixel, which is infeasible on

a CPU at video rates. Instead, both standalone cameras and mobile SoCs contain

specialized image signal processors (ISPs) which perform this task very efficiently.

Because the data buffering and the mathematical precision are optimized for this one

task, ISPs (and similar fixed-function modules) are able to achieve orders of mag-

nitude higher performance for the same power budget. A modern ISP can process

around a gigapixel per second while using less than 2W, which is roughly 25× more

efficient than a mobile CPU [14].

The problem is that ISPs are fixed-function pipelines; they are efficient in part be-

cause they only do one thing. Graphics processing units (GPUs) are another category

of specialized processors, targeted at a more general problem: highly parallel appli-

cations with lots of floating-point math. Because this application set is more general,

GPUs are more flexible and can be programmed with languages like OpenGL Shading

Language (GLSL), OpenCL, and CUDA. However, this increased flexibility relative

to ISPs comes at the cost of efficiency.

Over the past few years a handful of programmable ISPs have been created to fill

the space between fixed-function ISPs and GPUs. Examples include Google’s Pixel

Visual Core [15] and the the Movidius Myriad 2 [16]. There are several approaches to

creating programmable ISPs: some add more flexibility to a traditional ISP pipeline,

others look more like GPUs specialized for fixed-point integer processing. Chapter 4

will describe an approach based on an FPGA, which uses fixed designs programmed

into a reconfigurable compute fabric. But regardless of the architecture, creating

specialized hardware engines is only part of the challenge. The other challenge is to

integrate them into the complete system, such that application-level code can make

use of the hardware.

The system interface for traditional ISPs is quite simple: Either the data coming

off the camera is streamed through the ISP, or it isn’t. A handful of parameters are

sufficient to control the behavior of the ISP, and any further processing can be done on

the CPU or GPU using existing languages and libraries. This becomes more complex
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with programmable ISPs, because both the computation and the dataflow pattern

must be configured. Some operations consume two images or more; others might take

one image and run it through several different pipelines in parallel. Still others may

consume input from device memory and a live camera simultaneously. Unfortunately,

programming this specialized hardware is difficult, because both coding the algorithm

for the hardware and configuring the interfaces requires low-level programming that

is slow and error-prone. To enable productivity and portability, we need an interface

to this type of hardware that is capable of expressing these more complex dataflow

patterns.

The second impediment is control over the capture process. A cornerstone of

computational photography is the ability to precisely control the capture pipeline, in

order to capture more information about the scene in some way. Despite some recent

improvements, camera system control remains rather limited on current platforms.

Operating systems such as Android and iOS are running dozens of tasks in parallel

and have many layers of abstraction separating the user code from the underlying

hardware, which means that the timing precision of application code is sometimes

horrendous. For example, the timestamps obtained from different sources (such as

an image sensor and an IMU) can have varying offsets as large as twenty or thirty

milliseconds, making it difficult to reliably correlate them. It is similarly difficult to

synchronize actions which should take place in the system, such as frame captures

from multiple sensors, lens motions, or flashes. There are built-in mechanisms for the

traditional use cases — firing the flash during an exposure, or capturing an image

with stereo cameras simultaneously — but anything outside of these is difficult or

impossible.

To address these two impediments, this thesis introduces a set of abstractions that

enable applications to capture multiple data streams with precise timing constraints

and to process them in real time on heterogeneous hardware. Rather than specifying

the capture and computation via timing-critical interaction with a stateful system, an

application drives the system by submitting a set of stateless requests. Said differently,

instead of specifying how to capture and compute each output frame, the application

simply specifies what to capture and compute, and a runtime system orchestrates the
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process on the underlying hardware.

The abstract model unifies capture and processing, treating them as two parts of

a single pipeline. The entire process from capture to output is modeled as a dataflow

graph, with one or more capture requests as the data sources. Captures themselves

are timed relative to other captures or external events in the system, meaning that

an application can create precise schedules, and then delegate the work to a thread

suited for real-time control.

This work introduces the following contributions:

� A set of abstractions that enable mobile-device applications to capture multiple

data streams with precise timing constraints and to process them in real time

on heterogeneous hardware.

� A practical implementation of this API on a Xilinx Zynq SoC, making extensive

using of the Zynq’s heterogeneous hardware resources.

� Characterization of the performance of this system, with application toward

similar systems where a multitasking OS running user applications must make

use of embedded hardware with hard real-time constraints.

To lay the foundation for the rest of the thesis, the following chapter takes a

closer look at how existing cameras work, and discusses the existing interfaces for

controlling them. Chapter 3 describes a new software interface for controlling capture

and processing together, and Chapter 4 explains how such an API can be implemented

on real hardware, specifically a Xilinx Zynq SoC. Finally, Chapter 5 demonstrates a

number of working applications and several benchmark results which test the abilities

and limits of the system, and Chapter 6 concludes the thesis.



Chapter 2

Background

The API introduced in this thesis builds on several streams of work. First are camera

control APIs which enable applications to capture images and drive camera peripher-

als without needing direct access to the hardware. Second are multimedia streaming

frameworks, which are flexible toolkits for creating applications which must efficiently

capture, transcode, or view media at live framerates. Third are tools for writing high-

performance image processing code. This chapter introduces each of these in turn.

First, though, it is worth a brief look at modern cell-phone cameras to understand

what makes them tricky to control.

2.1 Characteristics of mobile image sensors

In a conventional camera, the exposure is controlled by opening and closing a mechan-

ical shutter, allowing photons to strike the sensor (or film) for a brief period of time.

By contrast, the cameras used in mobile devices generally do not have a mechanical

shutter for space and cost reasons, and instead rely on an “electronic shutter”. That

is, the pixels are electronically reset at the beginning of the exposure, and gather

light until the pixel value is read out. There is nothing to stop pixels from collecting

photons, so the exposure duration is simply the time between reset and readout.

However, reading out all of the pixels takes a significant amount of time — some-

where around 20 milliseconds, depending on the specific sensor and the size of the

8
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readout

Frame sync
(settings locked in)

Image row 0

row N

exposure

Time

reset

Figure 2.1: Conceptually, a rolling-shutter camera uses a reset and readout pointer,
which are steadily incremented in lockstep down the image. This results in each row
having the same exposure duration, but each row captures a slightly different slice of
time.

image being read out. During the readout time, rows of the image are read out se-

quentially from top to bottom as illustrated in Figure 2.1. Since image rows are read

out at different times, they must also be reset at different times to keep the exposure

duration uniform across the frame. This scheme is known as “rolling shutter”, be-

cause the shutter action is not a single event but rather operates in a rolling fashion

across the sensor [17].

In addition to simplifying the mechanical design of the camera and eliminating

the need to store pixel values until they can be read out, rolling shutter allows higher

continuous framerates than a comparable global-shutter sensor. As shown in Figure

2.3, it is possible to partially overlap the rolling shutter readout with the exposure,

with the result that the sensor hardware spends less time idle than in a global shutter

setup (Figure 2.2).

This also presents a challenge: when capturing shots repeatedly (such as for a

viewfinder or video), most CMOS sensors are free running. That is, the sensor is

not synchronized to anything else in the system, and produces a stream of image

data without it being explicitly requested. And because of the overlap, it is possible

that the next frame is already exposing by the time the current frame is finished

reading out, depending on the exposure duration and inter-frame blanking time. Any

configuration settings such as the exposure time and gain must be applied at precise
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Image row 0

row N Time

Figure 2.2: Sequential frames captured with a global-shutter sensor. Every line of
the image captures the same point in time, but the pixel values must be stored until
all of the data can be read out.

Image row 0

row N Time

Figure 2.3: Overlap of exposure and readout for a rolling-shutter sensor. Once a row
is read out, it can be reset and begin exposing the next frame while the remaining
rows of the current frame are read. This results in less idle time and higher framerates
than an equivalent global-shutter sensor capturing with the same exposure.
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intervals when they will not affect the image capture currently in process. In some

sensors, changing the settings in the middle of an exposure causes part of the image

to be captured with the new settings, producing an abrupt variation in the middle of

the image.

Other sensor options introduce even more timing intricacies, particularly those

which control the readout such as pixel binning, image size, or readout area. For

example, switching to a 2× binning scheme where four pixels are combined to produce

a single value requires that the pixel clock be reset and reconfigured for this double

readout, causing a stutter in the regular timing of the image stream. The result of

all this is that merely keeping up with the sensor is a substantial task, to say nothing

of the frame-to-frame adjustments we need for computational photography.

To alleviate this burden, many image sensors include one or more hardware conve-

niences to simplify particular aspects of the timing and coordination problem. Some

sensors only apply settings at the end of each frame, so changes to the registers only

apply to the subsequent frame and cannot corrupt a frame currently being captured.

Additionally, some (such as the Sony IMX219, which will be discussed in more detail

later) have two sets of frame settings registers, so that one set can be configured

while the other is currently used [18]. A single register write swaps the active set

of registers. This makes register settings atomic, ensuring that either all of the new

settings are applied or none of them are.

Other sensors drive a special flash trigger pin which pulses to synchronize an

external flash with the image capture, or can trigger their capture based on an input.

Some sensors also have a “fast switch” option where the sensor interrupts the exposure

it was currently taking, sets the reset pointer back to the top of the image, and begins

an exposure with new settings [19].

Even with all of these aids, however, the camera pipeline remains difficult to

control. The remainder of this chapter describes systems and abstractions that have

been developed to make the capture and processing pipeline more manageable.
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Figure 2.4: FCam model: User code specifies Shots and passes them to a Sensor,
which asynchronously returns Frames containing the image data and metadata Tags

describing what actually happened during the capture. Image from [22].

2.2 FCam

The FCam API [20, 21] was created to enable precise control of the camera capture

process on the unwieldy pipelines we have just described. FCam is designed around

the observation that the camera capture pipeline is just that — a pipeline. Because it

is a pipeline, it operates most efficiently when there are multiple images “in flight” at

any given time, but traditional stateful APIs (set some settings, take a shot, repeat)

make this rather difficult. At the same time, users at the application level do not

care about the state of the pipeline at any given time; they simply need to capture

images with various settings.

Therefore, instead of specifying the camera’s behavior in terms of its settings

and state, FCam allows a user to specify a set of shots which should be captured.

A runtime engine takes these shot requests and handles all of the implementation

details to capture the shots correctly. Since the user can specify a whole sequence of

images at once, there is no need to wait for one image to finish before the next one

begins, and the pipeline can run as rapidly as the hardware will allow.

The core objects in FCam and their interactions are shown in Figure 2.4. As

described already, the user specifies one or more requests encapsulated in the Shot

class. Each Shot contains information such as the exposure time for the shot, the
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analog and digital gain to apply, and whether the resulting data should be passed

through the ISP or returned immediately as raw pixel data.

The runtime asynchronously returns frames, which are the result of executing shot

requests. A Frame contains the resulting image data, but also the original shot request

and some metadata describing what actually took place. In some cases it is impossible

to satisfy the shot request exactly, either because the user specified something that

the hardware does not support, or because the timing at that moment does not

allow it. In these cases, FCam makes its best effort to capture the shot and returns

whatever information it can about what happened. The user program can examine

the resulting metadata and decide what to do.

To handle camera components other than image sensors, FCam introduces the

Device and Action objects. A Device represents a physical hardware device such

as a lens, flash, or gyroscope. An Action is a request that a device perform some

action, such as a flash firing or a lens moving to a particular position. These actions

are bound to shot requests, and as each shot is captured the system executes the

corresponding actions on the appropriate devices. Since actions are bound to shots,

the user can specify when they should take place relative to the beginning of the

exposure. In this way, each Shot specifies a micro-timeline of events: Move the lens

5ms before the start of the exposure, begin a 20-ms exposure, fire the flash 10ms after

the start of the exposure, and so forth. Like shots, actions are performed on a best-

effort basis: the camera makes an attempt to satisfy the request, and then returns a

data structure describing what actually took place. Actions may also append other

useful metadata to the frame. For example, an inertial measurement unit (IMU)

device can be attached to a Shot, and this adds a set of metadata tags to the Frame

describing the orientation of the sensor during the exposure.

The runtime engine is encapsulated inside the Sensor object. Shot requests are

queued up with the Sensor.capture() method and are captured asynchronously by

worker threads running in the background. The resulting frames are retrieved later

with Sensor.getFrame().

FCam acknowledges the streaming nature of image sensors and provides the

Sensor.stream() method to stream a particular shot or sequence of shots, capturing
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it repeatedly as long as there are no other shot requests with a higher priority. This

allows the user to keep the pipeline full and the sensor busy all the time, even if the

application-level code is busy with another task.

FCam provides a clean and expressive abstraction for controlling the image cap-

ture process, and dramatically reduces the real-time burden of controlling camera

pipelines. By recognizing and exploiting the pipeline nature of camera systems, FCam

facilitates a whole host of computational photography applications that would other-

wise require building a specialized camera system from the ground up.

However, there are several limitations to the FCam model. First, FCam was

designed with a single camera in mind, and the original implementation did not have

any explicit support for multi-camera systems. It is possible to instantiate multiple

sensors within FCam, but they operate as completely independent devices rather

than as two components of a unified camera system. To remedy this, Troccoli et

al. introduced a set of extensions for a multi-camera system [23]. In their proposed

API, the platform can enumerate all of the sensors connected to it, along with their

physical locations and orientations on the device. Multiple identical cameras can be

grouped together in a logical “sensor array” which share a shot queue, making it

possible to queue up corresponding arrays of requests to be executed simultaneously.

Finally, they introduce a basic synchronization object which allows semaphore-like

synchronization between devices which are not part of the same sensor array.

As with multiple cameras, FCam has limited support for timing multiple shots

on the same sensor. The user can specify a frameTime for a shot, which (at least in

theory) controls the duration from the start of one shot to the start of the next. This

is sufficient to set the framerate for a stream of requests but becomes unwieldy for

more complex timing scenarios, particularly when the requests have to be modified

due to the timing constraints of the sensor hardware.

Finally, all customized image processing happens outside the FCam pipeline. This

is not so much a drawback as an intentional limitation of scope, but due to the recent

innovations in programmable image processing hardware, capture and processing can

no longer be treated independently. FCam provides a mechanism to specify what

processing should be done in terms of the basic options of a conventional ISP: either
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process the image, or don’t. As the previous chapter argued, that landscape has

become far more complex and we need a more expressive way to specify the processing

alongside the capture.

Because processing happens in user code outside the FCam pipeline, it is difficult

(or impossible) to build tight feedback pipelines. For example, an autofocus loop

ought to evaluate the sharpness of the images coming out and use this information to

control the lens position in a feedback loop. Because the FCam pipeline is completely

opaque, this feedback has a latency of two frames or more. The autofocus examples

in FCam instead perform an entire focal sweep and pick the sharpest frame.1

Perhaps unsurprisingly, FCam is also limited by the platforms it runs on. The

initial implementations ran on top of the Video4Linux2 (V4L2) API, which facilitates

low-level access to various video devices on Linux platforms. Certain operations

which are perfectly reasonable and easily expressed in FCam, such as capturing shots

at different resolutions, are unsupported by V4L2 and required drastic workarounds

like closing the V4L2 device and reopening it at the new resolution. Another more

recent and important example of platform limitations comes from the Android mobile

operating system, which we discuss next.

2.3 Android Camera2

Android’s “Camera2” API [24] is essentially an implementation of FCam in Android,

which takes the key ideas and abstractions from FCam and adapts them to the

features and constraints of the current Android operating system. This implies both

some restrictive limitations, but also a number of additional features.

Because Android must run on a large and diverse collection of hardware, it also

imposes some limitations which make parts of Camera2 less expressive than the cor-

responding elements of FCam. Unlike FCam, it is not possible to time lens or flash

actions relative to image captures. In fact, although most of the objects in FCam have

1At the time, even this level of control was an important innovation — one student wrote an
autofocus routine that was better than the stock implementation on the Nokia N900.
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direct correspondences in Camera2, the Device and Action objects were removed en-

tirely. Instead, the various controls for the lens, flash, and so forth are specified as

options on the shot request. The result is that it is possible to specify whether the

flash should fire or not, but the timing and duration of the flash cannot be controlled

[25].

This simplification makes sense for Android, where the peripheral set is generally

limited to a lens and a single flash, and where there are hundreds of different hard-

ware devices attempting to support the API. Unfortunately this also pushes many

computational photography algorithms out of reach of application code and into the

domain of device-specific subroutines.

On the flip side, one added feature is support for multiple cameras: following the

ideas introduced by multi-camera FCam [23], application code can query all of the

available cameras on the phone, and each one reports the position and orientation of

the image sensor relative to the phone’s global coordinate system. With the introduc-

tion of “logical cameras” in Android Pie [26], it is also possible to request and process

streams from multiple cameras, with at least basic support for synchronization [27].

Camera2 also adds more output formats and more complete representations for vari-

ous camera configurations common in mobile devices (e.g., fixed-lens EDOF cameras),

as well as extensive mechanisms for querying the capabilities of the hardware.

Finally, and perhaps most importantly, Camera2 integrates capture with the An-

droid media pipeline. Unlike FCam, where the resulting frame data is handed back to

user code, Camera2 allows the application to specify one or more output “surfaces”

as targets. The image data is forwarded directly to these targets without further in-

tervention from the application, allowing full-framerate preview and capture without

the overhead of returning to user code. This kind of delegation by linking outputs to

targets points to a more general theme in multimedia processing, which we turn to

in the next section.
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2.4 Media streaming frameworks

Multimedia capture and playback is an important part of many applications, from

video chat to playing movies to editing video. These use cases have many overlapping

components (such as sharing the same set of video codecs) and need to be designed

with performance in mind in order to support the high data rates of streaming video.

As a result, every major operating system today includes a media streaming frame-

work that provides an API for capturing, encoding, reading, decoding, and displaying

video and audio streams.

Microsoft develops DirectShow for Windows [28], Apple has AV Foundation for

iOS and macOS [29], Android’s user-facing APIs wrap around the Stagefright library

[30], and Linux systems predominantly use GStreamer[31]. OpenMAX (“Open Media

Acceleration”) is an API developed and hosted by the Khronos group which aims to

be a standard multimedia framework for mobile devices [32]. These systems each

have their own peculiarities, but the functional core is very similar. In all of these

systems a multimedia application is built from a set of “nodes,” each having a set

of ports which produce or consume data. The nodes are linked together to form a

graph, and the entire graph is executed by the framework. The terminology differs

between frameworks, but the basic components are universal:

Node Graph Port

GStreamer Filter Filter graph Pad

DirectShow Filter Filter graph Pin

AVFoundation AVCaptureDevice,

AVCaptureOutput

AVCaptureSession AVCaptureInputPort

OpenMAX Component Port

An important aspect of these frameworks is that nodes are interchangeable. It

is straightforward to exchange a camera source for a file on disk, or to swap one

media codec for another. For example, most of GStreamer’s useful functionality is

implemented as a set of plugins which can be swapped in or out, or replaced entirely
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by user-defined components. Likewise, because Android uses OpenMAX IL under

the hood, phone manufacturers can integrate their hardware with Android by imple-

menting media-handling hardware modules as a set of OpenMAX IL components.

This thesis borrows and extends several ideas from these frameworks. The stream

processing API which is introduced in Chapter 3 is also based around a set of data-

processing nodes linked together to form a graph. Likewise, some of the implemen-

tation details of the system are inspired by the optimized implementations in these

other frameworks.

These media streaming frameworks also share some common limitations. Because

they are designed for feedforward processing of multimedia streams, they generally do

not have facilities for dynamically controlling an input device (e.g., driving a camera

the way FCam is able to) or for feedback within the pipeline.

In the academic space, Alexandre François published a series of papers in the

early 2000’s describing a multimedia architecture called SAI (“Software Architec-

ture for Immersipresence”) and a runtime implementation called MFSM (“Modular

Flow Scheduling Middleware”) [33, 34]. François argued that traditional multime-

dia frameworks structured around “pipes and filters” (such as those just described)

are inadequate for emerging interactive multimedia applications, particularly because

they do not permit sharing data between components except in a streaming fashion.

This makes it difficult to implement systems which maintain state as part of their

processing, or which require communication between multiple pieces of the algorithm.

Based on the observation that data in such a system can be categorized as either

volatile or persistent, SAI uses a hybrid data model which includes both dataflow

message-passing and persistent shared data. Data is organized into temporally-

sequenced pulses, which maintains temporal coherence of data while breaking up

the FIFO pipes model for improved parallelism.

Although multimedia processing has evolved significantly since the creation of

SAI, its basic critique is still valid: the pipes and filters model by itself is a poor

choice for handling interactivity and feedback. In the following chapter, we apply the

notion of volatile and persistent data to our camera system.
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2.5 OpenVX

Although most multimedia graph frameworks are focused on capturing, transcoding,

and playing video streams, one graph framework that has focused on processing is

OpenVX, also from the Khronos group [35]. At a high level, the aim of OpenVX is

to solve the problem of how to write portable image processing code and run it on

hardware with varying acceleration capabilities — in short, to be for computer vision

what OpenGL is for graphics.

Users write their computer vision applications against the OpenVX API, and

hardware vendors (Intel, NVIDIA, Synopsys, and half a dozen others [36]) create

implementations of the API for their hardware. Like OpenGL, the OpenVX API

enables the application to be (mostly) hardware-agnostic, and to transparently take

advantage of whatever hardware resources are available.

The design of OpenVX is based on an enumeration of important image processing

operations from OpenCV, which are defined as “kernels” in OpenVX. Applications

are constructed by linking together these kernels into graphs, which are then executed

by the vendor implementation. Because the application passes the complete graph to

the runtime system, it is possible for the implementation to statically schedule the

graph, manage memory, and possibly perform cross-kernel optimizations to improve

the overall efficiency of the application.

A number of projects have examined various compilation and scheduling tech-

niques for OpenVX graphs [37, 38], and a few have specifically examined compilation

of OpenVX kernels into hardware. JANUS [39] uses a library of OpenVX kernels im-

plemented in Vivado HLS to produce FPGA designs, and can maximize the through-

put for a given FPGA resource budget by transforming loops and fusing kernels

within an heuristic-guided optimization. AFFIX [40] is a similar project for Intel FP-

GAs which implements OpenVX as a library of OpenCL kernels. The AFFIX tool

performs a series of optimizations on the compute graph, partitions the graph into

CPU and FPGA sections to minimize storage and data transfer, and finally uses an

OpenCL compiler to generate the FPGA bitstream and CPU binaries.
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Unfortunately, OpenVX’s “fixed-kernel” approach imposes a number of limita-

tions, both algorithmically and performance-wise. Computer vision is an extremely

fast-moving field, and it is unrealistic to expect that a fixed set of kernels is sufficient

for algorithms emerging over the next few years.2 Most applications do use some

common kernels, but also combine this with some “secret sauce” — custom code or

algorithmic tweaks that make the application function. Recognizing this, OpenVX

allows user-defined kernels written in OpenCL or other languages, but this muddies

the collection of clean and easily optimized kernels.

The performance limitation comes from the fact that fast kernels don’t necessarily

make a fast algorithm. As we’ll discuss in more detail in the following section, many

speed improvements come from inter-kernel optimization: tiling the image and fusing

kernels to improve locality. Again, OpenVX attempts to address this by allowing

the implementation to optimize the graph, but there is no straightforward way to

integrate custom kernels into this optimization. Recognizing this problem, Özkan et

al. use the image-processing domain-specific language (DSL) Hipacc as a backend for

OpenVX [41] and add support for custom OpenVX nodes written in Hipacc, which

enables proper optimization of the entire processing graph. This is the approach we

describe in the next section with the Halide DSL.

Finally, like some multimedia frameworks, OpenVX has no notion of cameras or

live inputs; this is left to other system APIs. There was a proposal for “OpenKCam”

which aimed to be like FCam for the Khronos OpenGL/OpenVX/OpenMAX ecosys-

tem, but it never materialized [42].

2.6 Halide

Compared to OpenVX, the Halide image processing language takes a more flexible

approach to creating high-performance image processing applications [43, 44]. Halide

begins with the observation that image processing code optimized by experts gen-

erally uses a small toolkit of optimizations applied in various patterns, including

2Only a few years after its introduction, OpenVX is already overshadowed by neural-network
frameworks such as Caffe and Torch.
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vectorization to make use of SIMD hardware, tiling for cache locality, loop unrolling

to uncover additional parallelism, and multithreading to use multiple cores.

Instead of providing a set of pre-optimized kernels as OpenVX does, Halide pro-

vides a way to describe an entire algorithm and then rapidly experiment with com-

binations of these common optimizations. The central idea in Halide is to separate

the result to be computed (the algorithm) from the order in which the computation

is performed (the schedule). The algorithm is coded in a functional (side-effect free)

language which specifies the value for every pixel coordinate in terms of functions

of the inputs. The schedule then specifies the storage and compute order. Because

the schedule is specified concisely and separately from the algorithm, it is possible to

rapidly experiment with optimizations to find the best implementation. Moreover,

there have been several recent and ongoing attempts to automatically create optimal

(or near-optimal) schedules using some basic information about the hardware [45].

While Halide is a useful tool for optimizing CPU code, it particularly shines on

the task of porting algorithms to specialized accelerators. Because all of the storage

and ordering directives are contained within the schedule, the algorithm can remain

unchanged, and the only thing that must be rewritten for the target architecture is

the schedule. The main Halide codebase contains backends for CUDA and OpenCL-

capable GPUs and Qualcomm Hexagon DSPs [46]. Pu [47, 48] recently developed

a new backend for Halide which compiles a subset of Halide programs into efficient

designs for FPGAs using a line-buffered pipeline template.

Halide is focused specifically on the task of creating fast routines for processing

images, and as such it does not address a number of system-level concerns. For

example, Halide operates on image streams as simply a sequence of frames, and does

not contain any notion of state. Likewise, Halide is not concerned with where its

images come from or where they go; these things are left to a higher-level system.

To summarize, Halide solves the problem of creating a high-performance imple-

mentation of an image processing algorithm for a particular piece of hardware. It

intentionally does not solve the problem at the next conceptual layer: creating a

complete high-performance system for capturing and processing images. The remain-

der of this thesis approaches this latter problem, using Halide as one building block.
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As we’ll describe in the following chapters, we leverage Halide as a kind of “shader

language” for processing images within our system. We use the Halide-to-FPGA flow

from Pu [47] to produce executables for our platform.



Chapter 3

Camera system abstraction

Each of the languages and APIs described in the previous chapter addresses a different

variation of the same challenge: we need interfaces which enable both high developer

productivity and high runtime performance. This is particularly true for mobile

devices, which have numerous tasks with real-time constraints (inertial tracking and

processing, multimedia streaming and playback, wireless communication, and more)

and which must present all their features to application developers via a convenient

software interface.

The solution repeatedly applied in these domains is to delegate the work to a

separate low-level thread, which is designed and executed with timing and hardware

constraints in mind. In many cases, this thread runs on a completely separate pro-

cessor where it can operate in hard real time isolated from the actions of the rest

of the system. Wireless modems have their own processors, audio and video codecs

have their own hardware, and motion coprocessors are now built into MEMS inertial

measurement units [49].

This is possible because the development and manufacturing cost of adding an-

other processor to a system-on-chip (SoC) is almost zero — at least relative to the

cost of producing the SoC in the first place. IP designs for simple processors are inex-

pensive or even free [50, 51], and they take only a tiny fraction of a square millimeter

of silicon on a modern IC process [52]. As Moore’s law has marched forward, even the

central quad-core (or even octa-core) processor complex on a typical SoC has been

23
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reduced to a modest fraction of the total die size, with the rest filled in by GPU cores

and a host of specialized coprocessors [53].

This work builds on the assumption that the hardware cost of adding a small

co-processor is negligible, and thus that it is feasible to integrate dedicated a camera

co-processor which orchestrates image capture and manipulation in order to achieve

fine-grained control.

However, if the low-level work is delegated to a separate subsystem (and especially

a whole coprocessor), then it is essential to have a clean and expressive software

interface to delegate work. FCam, Camera2, OpenMAX, and OpenVX all attempt

to do this for their respective domains, albeit with some limitations. The rest of this

chapter describes a new API called F4graph which is tailored for the task of image

capture and processing on multi-camera, heterogeneous processing systems.

Specifically, F4graph is designed to solve two problems: First, it allows an appli-

cation to request that the hardware execute a set of actions with time constraints,

while also satisfying the constraints of the individual hardware devices and the overall

system. Second, it allows an application to make use of specialized hardware accel-

erators connected directly to the camera for streaming applications. By enabling the

user to define the processing along with the capture requests, the capture-processing

pipeline can run without additional intervention. Further, it allows the application

to describe iterative and feedback algorithms so these can run continuously without

intervention.

To achieve these goals, the F4graph API is designed to balance three objectives

in tension. First, it aims to provide the developer with as much “specification power”

as possible. That is, the application author should be able to control the cameras

and peripherals as precisely and flexibly as we can allow. At the same time, we want

to minimize the chance that the developer will request a set of actions which cannot

be executed on the hardware due to resource limits or conflicting constraints.

These first two objectives are in competition: A very restrictive API would allow

all requests to be correct by construction and eliminate the potential for errors alto-

gether, at the risk of being useless for all but trivial applications. A wide-open API

gives programmers ultimate flexibility and control, but exposes all sorts of pitfalls,
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which the user would have to discover the “hard way”. Section 3.1 explores this ten-

sion and our approach to solve it, and Section 3.2 describes the basic constructs in

our API.

The third and final objective is to provide hard guarantees about the system

behavior given the uncertainties of a complex multitasking hardware/software system.

At what point are requests guaranteed to happen? Are timing requests ever ignored,

and if so, under what circumstances? What happens when the system runs out of

memory? Again, these come into tension with the first objective. The less control

is ceded the user, the fewer promises the system is responsible for keeping — but

a system which makes no promises is hardly better than one that makes promises

but doesn’t keep them. Section 3.3 discusses this second tension after the core API

objects have been introduced.

3.1 Scheduling requests

We will formalize the term “request” to mean any request that the software makes of

the hardware platform. This is a generalization of the “shot requests” and “actions”

in FCam, both of which are programmatic requests that some action be executed on

the camera hardware. These are “requests” rather than “demands” since it may not

be possible to fulfill the request exactly, or even to execute it at all. This tension

between what can be specified and what can actually be achieved is precisely the

challenge we must address.

There are many possible ways to programatically specify the ordering and timing

of requests, but they each work by choosing some set of constraints which user code

can specify. From most restrictive to least restrictive, these constraints are:

� Exact time: Specify the exact time that a request executes in terms of some

global time system (e.g., the system clock).

� Exact delay: Specify exact nonzero delays between the execution of two re-

quests.
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� Synchronization: Two or more requests execute at exactly the same time

(presumably on different hardware modules). This can be thought of as limited

special case of exact delay, where the timing delay between two requests is zero.

� Ordering: Specify the order in which requests should be executed.

At the same time, the system should provide as strong a guarantee as possible

that the specified schedule can actually be achieved. We will consider three different

guarantees.

� Accommodate present occupancy: The system can find a schedule that fits

around the current occupancy of the hardware, or even reschedule if preempted

by higher-priority tasks.

� Preserve timing after failure: When something goes wrong (e.g., a request

took longer than expected), timing relationships between remaining requests

are preserved.

� Always valid: All schedules which can be specified are valid. That is, the

nature of the scheduling specification is such that there is always a valid sched-

ule which meets the specification while conforming to the constraints of the

hardware.

The benefit of the first and third guarantees should be apparent, but the second

deserves more discussion. In particular, is it even necessary to preserve temporal

relationships after a timing failure? An alternative would be to simply require that

no event fail, i.e., that all requests complete in a deterministic amount of time. With

this requirement, it would be possible to fully calculate the schedule and resolve all

constraints before committing any of it to execution. Every schedule, once running,

would complete exactly as it was specified, barring a catastrophic hardware or system-

level failure.

Unfortunately, the requirement that all requests complete in deterministic time

is quite restrictive. There are cases where the request execution time depends on an

external event, such as capturing a shot when a button is pushed or triggering a flash
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based on a sound sample or external trigger signal. Triggering on external events is

a powerful and important feature, but it inherently introduces non-determinism.

Additionally, many instances of continuous capture or metering require that a

software function process one set of results to generate the parameters for another

image in the capture sequence. If this software is not designed for real-time perfor-

mance or runs on a multitasking OS, it is impossible to make any guarantees, even if

it works in practice.

A third scenario which induces non-determinism is running multiple schedules

simultaneously, such as capturing an image while a viewfinder is running. Interrupting

the stream of viewfinder requests to take a shot breaks the deterministic timing of

those requests. We could maintain determinism by pausing the viewfinder schedule

before launching the capture schedule, but this pushes the burden onto the user

and introduces overhead. Instead, we will allow such interruptions and develop a

scheduling system which can handle them gracefully.

We next consider seven possible designs for a scheduling API, discussing both

the capabilities each design allows the user and the guarantees that the system can

provide under each one. This discussion is summarized in Table 3.1.
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Table 3.1: Possible scheduling choices with their corresponding capabilities and guarantees.
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The scheduling options lie between two extremes: at one end, the user specifies

exact timepoints for every request; at the other, the user cannot put any timing con-

straints on requests at all. Specifying exact timepoints allows a very simple interface:

a single command enables every possible schedule. Order, relative delays, and ex-

act timepoints can all be specified simply by pinning every request onto an absolute

timeline. Of course, giving the user this power means that the system cannot make

even basic guarantees. The user could easily specify requests that conflict with each

other, or which conflict with requests already queued up for the hardware. And since

the interface does not embed any notion of timing relationships between events, it is

impossible to preserve them, even if they exist in the user’s mind or code.

At the other extreme, the system could prevent the user from specifying any

timing constraints. With this restriction, the system can easily guarantee that all

schedules are valid and that every request will eventually be executed. The runtime

has total freedom to rearrange, reschedule, and optimize requests to execute in the

most efficient manner possible. However, the inability to specify the timing of requests

means that the system is useless for many practical applications. To continue our

survey of possible APIs, we’ll incrementally add more user control.

One option is to use only a simple ordering constraint: the system executes re-

quests in the order in which they were enqueued. This still leaves flexibility for the

system to work around the current and future occupancy constraints of the platform,

and delays due to non-deterministic requests can easily be accommodated without

breaking the ordering.

However, this simple ordering model has two shortcomings: first, there is no

option to time requests relative to each other, such as specifying that a flash should

fire simultaneously with a frame capture. Second, it is unclear what an “ordering”

even means for more than one device. A strict linear ordering (specifying that a

request does not execute until the previous one is finished, regardless of which device

it is on) would be a valid definition, but does not allow synchronization or multiple

devices operating in parallel.

We might solve this multiple-device issue by specifying an ordering of requests for

each device, and then allowing inter-device synchronization. This bears remarkable
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Figure 3.1: Order+Delay scheduling, used by FCam and Camera2. Requests are
executed in sequence, and the duration of each request is controlled by the FrameTime.

similarity to the problem of multicore software scheduling, which suggests that the

synchronization primitive we want is a semaphore. A semaphore provides a partic-

ular kind of synchronization: when process X reaches the synchronization point, it

does not continue until process Y sets the semaphore. This solution is proposed by

Troccoli et al. in their extension of FCam for multiple cameras [23]. This one-way

synchronization covers many cases in a camera system, such as waiting until until a

lens finishes moving before capturing the next frame. However, it does not address

other cases, such as scheduling two actions to occur at precisely the same time or

with some fixed time offset. 1

The FCam API (and Camera2) add a different extension to the simple ordering

model to provide timing control. Shot requests are queued up either individually or

as ordered groups (vectors) of shots, but each shot request additionally contains a

FrameTime (renamed SENSOR FRAME DURATION in Android Camera2) which controls

the duration of the request. That is, in addition to specifying the order, each request

specifies the time from the beginning of the request until the beginning of the next

request. The overall timing of the sequence can be controlled simply by setting the

FrameTime of each shot in a sequence, as shown in Figure 3.1.

This scheme is conceptually straightforward and easy for the developer to specify.

1As with software semaphores, there are also potential problems with deadlock, but these can be
prevented as long as the user is prevented from creating cycles in the constraint graph.
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Figure 3.2: Relative timeline scheduling, where requests are scheduled using a timeline
relative to the start of the entire capture.

Additionally, because it does not contain any reference to absolute time, it neatly

enforces the limitation that the hardware may be busy for some time into the future.

Unfortunately, the FrameTime only works for sequences of requests on the same device,

and does not offer any way to control the timing between multiple devices.

It seems natural to combine the semaphore approach with FCam’s ordering and

delay mechanism, providing more control than an ordering alone. However, this still

does not allow the user to specify timing relationships between devices except for the

one-way “wait until” synchronization described earlier.

One way to achieve both a consistent global ordering and inter-request timing

would be to specify the time of each request relative to the start of the sequence, as

shown in Figure 3.2. The relative timing of requests is fixed, but the entire time-

line can be shifted to accommodate hardware constraints. For a single camera, this

is functionally equivalent to the FCam model: both methods create a timeline and

attach timepoints to each request. But specifying times rather than durations makes

it easy to link together requests across multiple devices, and removes an additional

quirk of the FrameTime model. When sequencing shots in FCam, each one is tem-

porally contiguous with those before and after it, and all intervals must be created

by stretching out some requests to waste time. For example, to capture a time-lapse
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sequence with one image every 10 seconds, the user code must set the FrameTime to

10 seconds, which (at least conceptually) blocks the sensor for that entire time. By

specifying relative times, the user can express the same intent, without the side effect

of limiting what happens in the interim.

Unfortunately, the “relative timeline” approach is quite brittle in the face of timing

errors. Although it does offer some flexibility for finding an open time window, the

failure of any time constraint is likely to cause subsequent ones to also be delayed

in domino progression. FCam’s “frame time” scheduling has the small advantage

that, in the event of failure, only one timing relationship will be broken at a time.

Because each request is timed relative to the one before, one delay does not result in

an immediate cascade of failures.

This observation suggests an improvement to the “relative timeline” scheme:

rather than specifying all of the timepoints relative to the beginning of the first

request, we can allow the user to specify times relative to any other request. If some

request cannot be executed at the desired time, then at least the requests scheduled

relative to it can be moved to preserve their timing relationships, as illustrated in

Figure 3.3. This scheduling method gives the user near complete control of timing

while allowing the system to accommodate the hardware constraints and preserve as

many timing relationships as possible after a failure.

One apparent drawback to this “relative constraint” scheme which is avoided by

the FCam model is that it is possible to schedule multiple requests such that they

interfere with each other, for example by scheduling two requests on the same device

at overlapping intervals. However, some variation of this conflict is almost inevitable

if we allow synchronization across multiple devices.

To understand why, it is helpful to consider schedules as graphs, where each node

is a Request and edges are timing relationships between requests. Scheduling conflicts

occur when a request has multiple competing constraints. As long as there are no

undirected cycles in the graph, then the system cannot be overconstrained.

We could restrict the user to specifying only a single timing constraint per request,

forcing the graph to be a tree, and many practical schedule graphs do in fact look

like trees. However, it is not only user-defined constraints that could be the problem:
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Figure 3.3: Constraint-based scheduling, where requests are scheduled relative to
other requests, not necessarily to the beginning of the capture.

device utilization also imposes constraints, and these must coexist with the user con-

straints. An example in shown in Figure 3.4, where two synchronization constraints

force a timing conflict.

For these reasons, it is unrealistic to construct an interface that is useful while

maintaining restrictions such that all schedules are correct by construction. The

question instead is how to manage these failure cases. In F4graph, this happens in

two phases. As the schedule is being built, the system can construct the constraint

graph and check for any conflicts based on the known timing parameters. This catches

shot
begin

end

flash
begin

endflash
begin

end

10ms
6ms

0ms shot

flash flash
6ms

6ms

utilization
constraint

user
constraints

Constraint graphSchedule

Figure 3.4: A shot on an image sensor and two flash requests on a flash, synchronized
to the start and end of the exposure. The constraint graph would be a tree if we
considered only the user constraints, but there is an additional requirement that the
flashes not overlap.
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errors such as scheduling two requests on the same device with overlapping times. In

the less common cases where the timing cannot be statically determined (because it

depends on external events or non-deterministic processing), the system checks for

errors while the schedule runs, completes the schedule on a best-effort basis, and

provides error handlers and metadata to inform the user.

Having laid out the basic scheduling model, we now formalize it and introduce the

API objects and operations that are used to define requests and specify schedules.

3.2 Scheduling constructs

To implement this constraint-based schedule, F4graph defines a set of software objects

(Devices, Requests, Events) and provides methods for linking together their timing

relationships.

Basic objects: Requests, Events, and Devices

Our notion of a “request” is formalized in the API as a Request object. Like the

“shot requests” and “actions” in FCam, it represents a request that a device perform

some action, such as capturing a shot or moving the lens. Requests produce data as

a result of executing: Requests to image sensors produce frames of image data, and

requests to IMUs produce samples of the current orientation. Requests also return

metadata describing when the action was executed and what parameters were actually

applied, which gets passed along with the data. The format and use of this metadata

is discussed further in Section 3.8.

Requests must be scheduled relative to events of some type; these are represented

with Event objects. Events are fired by Requests or by downstream processing nodes.

For example, an event is fired when a image sensor begins exposing a frame, when a

timer reaches a particular value, when a lens reaches its target position, or when an

image finishes processing.

Similar to FCam and Camera2, a piece of physical hardware in the system is

represented by a Device. A Device could be an image sensor, a lens, a gyroscope, a

modulated light source, or some other piece of hardware.
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Putting these together, we can write a simple program that captures a single

image and saves it to a file:

1 Graph g;

2 Camera cam; // Camera is a subclass of Device

3 g.addDevice(cam);

4

5 ShotRequest shot = cam.makeRequest();

6 shot.exposure = 50.0; // 50ms exposure

7 g.addRequest(shot);

8

9 FileWriter file("out.jpg");

10 g.add(file);

11 g.connect(shot.output, file.input); // Pipe result to a file

12

13 g.execute(); // Run the graph and execute the ShotRequest

Creating schedules

With these objects defined, we can begin to compose schedules of Requests. To

capture an image with a flash, for example, we create requests for both the image

capture (a ShotRequest) and the flash (a FlashRequest), and then schedule the flash

request to occur when the exposure begins:2

1 // Set up objects

2 Graph g;

3 Camera cam;

4 Flash flashDev;

5 g.addDevice(cam);

6 g.addDevice(flash);

7

8 // Create camera and flash requests and add them to the graph

9 ShotRequest shot = cam.makeRequest();

10 g.addRequest(shot);

11 FlashRequest flash = flashDev.makeRequest();

12 g.addRequest(flash);

2In this example and in those that follow in the remainder of this section, nothing is done with
the data that is captured. The subsequent section describes in detail how to pipe the output of
requests to various processing and output nodes.
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13

14 // Fire flash 5ms after shot begins exposing

15 g.schedule(flash, AT, shot.begin, +5);

16

17 g.execute();

The key API call in this example is Graph.schedule(), which takes four param-

eters:

� Request : The request being scheduled.

� Relation : When the request should occur relative to the event; one of AT,

AFTER, or WITHIN.

� Event : The event which the request is scheduled relative to.

� Delay : An optional delay to insert between the event firing and the Request

initiation, specified in milliseconds.

In the example above, flash is scheduled to occur AT the time shot begins plus

five milliseconds. That is, the flash should fire 5ms after the sensor begins exposing.

We can synchronize two shots on separate cameras so that both are captured

simultaneously using schedule(shot2, AT, shot1.begin, +0):

1 Graph g;

2 Camera cam1; // Create and add both cameras

3 Camera cam2;

4 g.addDevice(cam1);

5 g.addDevice(cam2);

6

7 ShotRequest shot1 = cam1.makeRequest(); // Create and add both requests

8 g.addRequest(shot1);

9 ShotRequest shot2 = cam2.makeRequest();

10 g.addRequest(shot2);

11

12 g.schedule(shot2, AT, shot1.begin, +0); // Capture at the same time

13

14 g.execute();
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Because we can create and manipulate timing constraints programmatically, it

is straightforward to set up captures with many cameras. For example, to create a

Matrix-style bullet-time sequence where a large number of cameras capture the same

scene with a slight time offset, we can set up a large array of cameras and schedule

requests with small delays:

1 Camera cams[N_CAMS];

2 ShotRequest shots[N_SHOTS];

3 for(int i = 0; i < N_CAMS; i++){

4 shots[i] = cam[i].makeRequest();

5 g.addRequest(shots[i]);

6 if(i > 0){

7 g.schedule(shots[i], AT, shots[i-1].begin, +0.5); // 500 us delay

8 }

9 }

The event need not be the start of the exposure; it could just as easily be the end

of the exposure or the completion of a lens motion. In the example below, we move

the lens in between capturing two images, waiting for the first exposure to complete

before moving the lens, and then waiting for the lens to stabilize before capturing the

second.

1 Graph g;

2 Camera cam;

3 Lens lens;

4

5 g.addDevice(cam);

6 g.addDevice(lens);

7

8 // Create two shot requests on the same camera

9 ShotRequest shot1 = cam.makeRequest();

10 g.addRequest(shot1);

11 ShotRequest shot2 = cam.makeRequest();

12 g.addRequest(shot2);

13

14 // We must specify the duration for the lens to hold its position

15 LensRequest lensPosition = lens.makeRequest(0.8);

16 g.addRequest(lensPosition);

17
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g.schedule(lensPos, AT, shot1.end, +0);

g.schedule(shot2, AT, lensPos.settled, +0);

for(int i = 1; i < N_CAMS; i++)

  g.schedule(shots[i], AT, shots[i-1].begin, +0.5);

Figure 3.5: Visual depiction of the constraint graphs for the schedules introduced up
to this point. Arrows point from each timing “anchor” to the corresponding request.

18 // Start moving the lens after the first shot;

19 // take the second after the lens is settled.

20 g.schedule(lensPosition, AT, shot1.end, +0);

21 g.schedule(shot2, AT, lensPosition.settled, +0);

Each scheduling directive implies a timing constraint between some set of requests,

building up a constraint graph. This is a useful visual and mental model for describing

complex sequences of requests, and will be particularly useful for reasoning about

what happens when constraints must be broken. Figure 3.5 visually illustrates the

constraint graphs for the code examples introduced so far.

Scheduling relations

As alluded to earlier, devices also impose constraints on the schedule: a sensor can

only capture one image at a time, and a flash may need some recharge time between

firing. As described in Section 2.1, most CMOS image sensors do not capture images

on demand, so the precise time when a particular request can be satisfied is often

tightly constrained. For example, if a sensor is 25ms into capturing a 33millisecond

shot, the next frame may be available in exactly 8ms. If that is too soon, the next

available time slot might not be until 8 + 33 = 41ms.
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To provide flexibility for these constraints, we can specify that a Request execute

on an open time interval after an event, rather than after an exact interval. For

example, we could rewrite the previous lens motion example more flexibly using the

open-ended constraint AFTER rather than the exact constraint AT:

1 g.schedule(lensPosition, AFTER, shot1.end, +0);

2 g.schedule(shot2, AFTER, lensPosition.settled, +0);

In this application, the intent is not that the lens move at precisely the end of the

exposure nor that the second shot be captured the instant the lens settles, but instead

that the lens not start moving until the first shot is over, and that the second shot

not occur until the lens is settled. An AFTER constraint ensures that the latter is

true while leaving flexibility for the scheduler to meet other constraints. If it happens

that there are no other constraints, the system will execute the request as soon as

possible. That is, the AFTER relation will behave as if it were an AT. By eagerly

executing requests, the system preserves as much future flexibility as possible.

Given AT and AFTER, we might ask whether there is a corresponding “BEFORE”

relation. The answer is a qualified yes. “BEFORE” specifies that a Request must

execute before an event plus some time interval, which is not necessarily unreasonable

if the delay is greater than zero.

Since in the general case it is not possible to predict when an event will occur, the

normal use case for “BEFORE” is to set an upper bound on the delay between an event

and a subsequent request. Because of this, we instead refer to this “BEFORE” relation

as WITHIN. For example, to schedule a shot to occur within 10ms of a button being

pressed, we could write:

1 g.schedule(shot1, WITHIN, button.press, +10)

Said another way, shot1 should occur before 10 milliseconds have elapsed since the

button press event.
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Events: static and dynamic

The WITHIN relation brings up an important distinction between two types of events.

Some (including most of those introduced so far) are static events, meaning that they

occur at a known time relative to their parent requests. The clearest example of

a static event is a Request’s start event, which fires at exactly the same time as

the request begins executing. An end event is also static if the Request’s duration

can be statically determined by its parameters. For example, the duration of an

image capture can be fully determined by the exposure and readout times, and the

duration of a flash event is specified explicitly. For timing constraints relative to static

events, the scheduling problem reduces to finding a time offset between two Request

executions.

There are also dynamic events, whose execution time is non-deterministic. One

example of a dynamic event is an external synchronization signal, perhaps from the

system, from a high-precision time source such as a GPS, or from another mobile

device. Another example is a node further down the processing pipeline which controls

the capture settings. A processing node might evaluate IMU samples at 200Hz and

fire an event when it detects that the camera is still in order to minimize motion blur,

or an autofocus block might fire an event when it has processed enough of the image

to know which way to move the lens. Similarly, a program to capture lightning strikes

might run a detection loop on low resolution images at a high framerate, and fire an

event when it detects a pre-strike, launching a Request to capture a full-resolution

image. These types of event-based feedback loops are discussed in more detail in

Section 3.7.

Delays

Since the firing time of dynamic events is unknown, it is obviously impossible to

schedule actions to happen before they occur. To enforce this, F4graph requires all

Event-Request delays to be non-negative. In the cases where a negative delay might

be meaningful and useful, it is always possible to rewrite the constraint with a positive

delay. For example, the constraint
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1 // Make A start at least 5ms before B starts

2 g.schedule(A, BEFORE, B.start, -5);

can be written equivalently as

1 // Make B start at least 5ms *after* A starts

2 g.schedule(B, AFTER, A.start, 5);

Constraints to events other than the start are a little trickier, but the same result

holds. A constraint to an end event, such as

1 // Make A start at least 5ms before B finishes

2 g.schedule(A, BEFORE, B.end, -5);

cannot be rewritten directly, since we cannot set B.end. However, we can use the

duration of the event to achieve the same result:

1 // Make A start at least 5ms before B finishes

2 g.schedule(A, BEFORE, B.start, B.duration - 5);

3

4 // Or if B is shorter than 5ms:

5 g.schedule(B, AFTER, A.start, 5 - B.duration);

If the event is dynamic and the duration is therefore unknown, doing math with the

duration is not possible, which effectively prevents the user from illegally scheduling

a Request to occur before a dynamic event.

Streaming and looping

Up to this point we have only considered burst captures, where the Request (or group

of requests) is executed once. However, a common use case is to capture a stream of

frames, with one or more Requests executed repeatedly. This is the case for a live

viewfinder and for capturing video, but also potentially for capture modes which grab

data until some event occurs (e.g., continue capturing frames until all the subjects

have their eyes open). To enable this, F4graph offers the executeContinuous()

method. The behavior is the same as the execute() method except that instead of
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running a fixed number of iterations, executeContinuous() runs the graph until the

stop() method is called.

However, simply executing the graph repeatedly is not sufficient; there are in-

stances where it is valuable to constrain the timing from the end of one burst to

the beginning of the next. To do this, F4graph includes an additional method,

Graph.repeat(). This allows the user to specify a timing constraint much the same

way as Graph.schedule(), except that the constraint is applied between an event in

the current execution iteration and an event in the next iteration.

This can be thought of as creating a cycle in the timing graph. In principle, it

would be possible to achieve the same outcome by simply detecting any cycles in the

timing graph, and applying those as repeat constraints. However, unintentional cycles

in the graph are highly problematic, so we instead refuse to create any cycles in the

graph with Graph.schedule(), and offer Graph.repeat() as an explicit mechanism

for defining this feature.

An example of streaming a single shot at a consistent framerate of 30FPS is shown

below.

1 Graph g;

2 Camera cam;

3

4 ShotRequest shot = cam.makeRequest();

5 g.addRequest(shot);

6

7 g.scheduleRepeat(shot, AT, shot.begin, 1000.0f / 30);

Likewise, it is straightforward to stream a group of shots, such as to alternate

short and long exposures in order to produce HDR video.

1 Graph g;

2 Camera cam;

3

4 ShotRequest s_short = cam.makeRequest();

5 s_short.exposure = 0.5; // Short exposure: 1/2000 sec

6 g.addRequest(s_short);

7

8 ShotRequest s_long = cam.makeRequest();
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9 s_long.exposure = 20; // Long exposure: 1/50 sec

10 g.addRequest(s_long);

11

12 g.schedule(s_long, AFTER, s_short.end, +0);

13 g.scheduleRepeat(s_short, AFTER, s_long.end, +0);

3.3 Scheduling errors and guarantees

As discussed at the end of Section 3.1, giving the user an expressive scheduling inter-

face means that we must be prepared to handle invalid schedules. Fortunately most

event timing is static, so our scheduling method can easily check that the requested

schedules are legal as they are constructed. Errors can still occur in cases where event

timing is dynamic and depends on the runtime behavior of the system. These are

handled by relaxing a minimal number of constraints and executing the remaining

requests as scheduled.

To explore these issues in detail, let us define a “scheduling subgraph” to be a

collection of one or more Requests which are linked together only by static events.

Because the firing times can be calculated for static events, all of the relative times

between events can be computed, and the entire subgraph can be scheduled via an

optimization problem without any additional information. Constraints based on dy-

namic events are the broken links between scheduling subgraphs. Because the event

time is unknown, a subgraph cannot be scheduled until all of the dynamic events

driving it have been resolved. With this terminology out of the way, we consider the

types of errors which could occur.

3.3.1 Static errors

The first type of error is a statically-detectable conflict, where a user-applied timing

constraint directly conflicts with another constraint in the graph. The most obvious

example of this would be two constraints on the same request which specify conflicting

times, such as in the example below:
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1 g.schedule(A, AT, B.start, +0);

2 g.schedule(A, AT, B.start, +20);

An equally problematic case is when two requests are scheduled on a device such

that their execution would overlap, such as asking one sensor to capture two images

simultaneously:

1 Graph g;

2 Camera cam;

3

4 g.addDevice(cam);

5

6 ShotRequest shot1 = cam.makeRequest();

7 g.addRequest(shot1);

8 ShotRequest shot2 = cam.makeRequest();

9 g.addRequest(shot2);

10

11 // This works if shot1 and shot2 are on different cameras, but not

12 // if they are on the same camera:

13 g.schedule(shot2, AT, shot1.start, +0);

These conflicts are “statically-detectable” because it is not necessary to analyze

the state of the system or to fully schedule the graph in order to detect the problem;

all of the necessary information is embedded in the static parts of the schedule. On

each call to Graph.schedule(), the scheduler checks the new constraint against the

existing set, and returns a failure code to the user if it detects any conflicts.

3.3.2 Static/dynamic overconstraint

A related problem is when a Request has both a static and dynamic constraint, or

possibly more than one of each. Consider the example shown in Figure 3.6 where one

shot is analyzed and used to meter a second shot, scheduled to be taken 100ms after

the first. If the metering calculations take place on a non-real-time system, then it

is impossible to make hard guarantees about when the computation will finish. The

data dependency from the metering calculation to the second shot implies a dynamic

AFTER constraint: the completion of the processing is a dynamic event, and the shot

may be taken any time after the event fires.
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Figure 3.6: A static/dynamic overconstraint created by specifying a fixed interval
between shots plus a non-deterministic processing operation which uses the result of
the first shot to determine the exposure of the second shot. If the processing takes
too long, the 100ms interval constraint will be broken.

Because of this dynamic constraint, the shots are not in the same scheduling

subgraph and cannot be committed for execution together. If the processing takes

takes too long, the static 100ms AT constraint must be broken.

3.3.3 Run-time conflict

A third possible error is a dynamic or run-time conflict. Unlike statically-detectable

conflicts, which are the result of intrinsically impossible constraints, dynamic conflicts

are caused by a conflict between the schedule and the current runtime state of the

system. For example, consider the following schedule, where a shot is to be taken at

the instant a button press is detected:

1 Graph g;

2 Camera cam;

3 ShutterButton button;

4

5 ShotRequest shot = cam.makeRequest();

6 g.addRequest(shot);

7

8 ButtonRequest capture = button.makeRequest();

9 g.addRequest(capture);
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10

11 // Take the shot the instant the button is pressed

12 g.schedule(shot, AT, capture.pressed, +0);

There is nothing intrinsically broken about this schedule. However, depending on

the state of the image sensor at the instant the request is fired, it may not be possible

to capture a shot immediately.

Consider also the case of streaming a sequence of images 33ms apart while running

an autoexposure loop, which is a normal case for a viewfinder or video capture. If the

exposure time is driven dynamically and not clamped to be less than about 20ms,

then it is possible that the exposure will be driven such that a frame takes longer

than 33ms and the frame-to-frame constraint cannot be met.

In the case of dynamic conflicts, it is not helpful to immediately return a fail-

ure code to the user since the requests have been submitted and are already in the

pipeline. Instead, the system breaks the dynamic constraint(s), and records exactly

what took place in the capture metadata. In the shutter example, if the image sensor

is unable to capture when the button is pressed, the (shot, AT, capture.pressed,

+0) constraint will be converted to an AFTER constraint and shot will be captured

at the earliest opportunity. Static constraints are still preserved as long as they do

not have other conflicts, since the run-time system schedules complete schedulable

subgraphs.

3.3.4 Streaming errors

A final category of errors appears when we consider streaming applications that exe-

cute continuously. It is not possible to reserve an infinite amount of space for all future

captures; nor is it reasonable to mandate that all downstream processing operate un-

der hard real-time constraints. Thus, it is possible that the downstream hardware is

unable to keep up with the schedule, and the system runs out of resources, whether

pre-allocated memory buffers or something else.

Some constraint must be broken, whether by dropping frames or stalling the

pipeline. We choose to handle this by breaking the repeat constraint and stalling

the pipeline. For example, if insufficient buffers are available after a run through the
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schedule, the next iteration will not be committed for execution until enough buffers

are freed, regardless of the inter-iteration timing constraint.

3.3.5 Guarantees

To summarize, the runtime system makes the following guarantees. If a graph is

accepted (i.e., a call to execute() succeeds), then the following are true:

� The graph contains no statically-detectable conflicts. This is enforced during

each API call as the graph is created, providing a clear indication which con-

straint is at fault.

� Scheduling subgraphs will execute atomically, with all of their constraints sat-

isfied. Said another way, the scheduler will find a way to satisfy at least the

internal static constraints, and then the subgraph will be committed for execu-

tion as a whole.

� Constraints based on dynamic events are executed on a best-effort basis. All

of the requests will be executed and processed, but the timing constraints may

not be satisfied.

� The graph execution will not fail on the first iteration due to resource limi-

tations. This can be ensured by reserving resources at the beginning of the

execute() call.

If the graph fails on subsequent iterations due to resource constraints (i.e., the

camera is capturing continuously and all of the image buffers are in use), then

the pipeline will stall and the repeat constraint will be broken.

3.4 Basic dataflow graphs

So far we have seen how to schedule a group of requests for execution, but have not

done anything with the resulting data. In this and the following sections, we describe
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Figure 3.7: A simple graph which takes a shot with a flash, processes it, and displays
the result.

the mechanisms in F4graph for defining dataflow and computation after the requests

are executed.

Data processing is specified by linking together nodes which produce and consume

data to form a graph. When executed, the requests produce data which is passed

through intermediate processing nodes and eventually to sink nodes which do not

produce further outputs. The code example in Listing 1 on page 49 creates a simple

graph where the output of a shot request is fed through a processing node to a display

window, and Figure 3.7 shows a visual representation of this graph.

The first half of Listing 1 are familiar from Section 3.2; lines 1-15 create a graph,

instantiate devices and requests, and schedule a flash to occur during an exposure.

Lines 18 and 23 create graph nodes for the processing and display windows, and the

subsequent lines add them to the graph, as is done for Requests.

Lines 20 and 25 link the nodes together in the graph. Every node has one or more

ports (“pads” in GStreamer; “pins” in DirectShow) through which the node produces

and consumes data. The output of one node is connected to the input of another

with Graph.connect():

1 // Connect the output of sourceNode to the input of destinationNode
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1 // Graph object and hardware devices

2 Graph g;

3 Camera* cam = new Camera;

4 Flash* flash = new Flash;

5

6 // Set up the requests and add them to the graph

7 ShotRequest* shot = cam->makeRequest();

8 shot->exposure = 25.0; // 25ms

9 g.addRequest(shot, "shot");

10 FlashRequest* f = flash->makeRequest();

11 flash->duration = 5.0; // 5ms

12 g.addRequest(f, "flash");

13

14 // Schedule the flash to occur 5ms into the exposure

15 g.schedule(f, AT, shot.begin, +5);

16

17 // Create the processing node

18 HalideNode* isp = new HalideNode("isp.kernel", "pipeline_zynq_argv");

19 g.add(isp, "isp");

20 g.connect(shot->result, isp->getInput("input0"));

21

22 // Create the display

23 WindowEGL* display = new WindowEGL("Example viewer");

24 g.add(display, "display");

25 g.connect(isp->result, display->input)

26

27 g.executeContinuous();

Listing 1: Graph example which captures a shot with a flash, processes the result, and
renders it in an EGL window. Figure 3.7 provides a visual depiction of this graph.
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2 g.connect(sourceNode->result, destinationNode->input);

A given output may connect to multiple inputs, but each input can only be driven

by a single output. Data ports are typed with a C++ datatype and dimensions,

and ports can only be connected if their types match (or if there is an available type

conversion), and an output is being connected to an input.

In addition to passing streams of data, ports can also pass parameter values. All

of the parameters to a Request (such as sensor gain or flash duration) are in fact

ports, which means they can be driven by other nodes in the graph.

However, it’s often the case that some inputs should be constants, which brings

up a distinction between two ways an input port can behave. Statically-assigned

ports accept a persistent value which is used for multiple invocations of the node,

while dynamically-assigned ports are fed exactly one new data pulse per invocation.3

Statically-assigned ports may have their values updated while the pipeline is running,

but the value is persistent. For example, the exposure value for a camera shot might

be statically-assigned: it can be updated while the pipeline is running (perhaps due

to user input or an autoexposure algorithm), but in the absence of any updates the

current value will continue to be used repeatedly. Ports are statically assigned simply

by assigning a value to them, as shown in the example statements below and in line

8 of Listing 1.

1 shot.exposure = 20.0; // 20ms

2 halideDemosaic.getInput["ccm"] = colorCorrectionMat;

Conversely, the image data input for a processing node is dynamically-assigned; it is

connected to another node which produces new data for each invocation.

All static ports must be given an initial value, either by the Node constructor or

by user code. Remaining ports are assumed to be dynamic and must be connected

to matching output ports. Once the pipeline is configured and running, each node

executes when all of its dynamically-assigned ports have been provided with a new

data pulse.

3This terminology is borrowed from the notion of static and dynamic pulses used in SAI [33],
although our use is somewhat different.
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F4graph uses a simple model for graph execution: the graph executes a sequence

of one or more “iterations”, where each node executes exactly once. On each iteration,

every Request is scheduled to execute once according to its scheduling constraints.

Downstream nodes execute once — when all of their dynamically-assigned inputs

have a valid data pulse — and produce one result on each output port.

This “one execution per iteration” restriction enforces a set of clear runtime se-

mantics:

� The entire graph executes at the same rate, so it is not necessary to synchronize

or correlate data pulses from different streams. In cases where it is necessary

for data to be produced at different rates (e.g., an IMU sampling at 10× the

framerate), it is straightforward to make more than one request to the same

hardware device within the graph to produce an integer multiple of the base

rate.

� A call to Graph.execute() executes the entire graph exactly once, and execute(N)

executes the graph N times.

� If the user calls Graph.executeContinuous(), the runtime can begin the second

iteration as quickly as it can be scheduled (following any resource utilization and

repeat() constraints), and multiple iterations can be in flight simultaneously.

However, each iteration stays in order; mismatches in rates and runtimes cannot

scramble the ordering.

3.5 Processing images

Having introduced the core framework, we now turn to the task of actually process-

ing images. In theory, custom nodes could be implemented to perform all types of

image processing operations, or to encapsulate user image-processing code. However,

rather than implementing a fixed set of nodes (as OpenVX does) or asking the user

to interface all of their code with F4graph, a more flexible and powerful approach

is to create an interface to a language designed for image processing. As described
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in Section 2.6, Halide is a powerful language for rapidly optimizing image process-

ing applications, and works nicely as a kind of “shading language” for the system.

Moreover, because Halide code can be compiled into FPGA modules which integrate

seamlessly with F4graph, it is possible for users to write Halide code and use it to

accelerate image-processing code on an FPGA without needing to know Verilog or

even write a line of driver code. The details of this implementation are described in

Chapter 4.

To use Halide within F4graph, the user writes a Halide function and a correspond-

ing metadata file describing the input and output ports for the node, including any

size restrictions. The metadata file also includes default values for any ports which

should be statically assigned on construction. Within the F4graph code, the user

instantiates a HalideNode with the metadata file, and links it into the graph like any

other node. An example is shown in Listing 1, which uses an ISP implemented in

Halide to transform raw camera pixels into a full-color image.

3.6 More complex graphs

The applications described so far have been straight pipelines, where a single source

produces data that is processed by a linear sequence of nodes. Many real applications

are more complex than this, and this section introduces constructs to handle these

cases.

The first case is a node which consumes more than one input stream. One example

of this is computing depth from a stereo pair, where two cameras physically spaced

apart capture images simultaneously, and the resulting image parallax is used to

estimate the depth of objects in the scene. Halide nodes can take multiple inputs, so

connecting multiple shots to one processing block is straightforward, as shown below.

The resulting graph is depicted in Figure 3.8.

1 HalideNode* stereo = new HalideNode("stereo_cpu.kernel",

2 "pipeline_zynq_argv");

3 g.add(stereo, "stereo");

4 g.connect(left->result, stereo->getInput("input0"));
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Figure 3.8: Visual depiction of the processing graph for the stereo application. Two
images are captured simultaneously and passed to a Halide node for processing. The
result is displayed in a window.

5 g.connect(right->result, stereo->getInput("input1"));

Since each dynamically-assigned input port holds its inputs in a queue until ready to

be consumed, multi-input nodes do not require any special handling. The two images

are pushed to the stereo input ports as soon as they are captured, and the stereo

processing node runs once both are available.

A related case is where nodes need to access frames from past iterations of the

graph. Consider running optical flow on a stream of image frames, where each pair of

frames is compared to find the relative motion of the scene. A naive implementation

would schedule two requests, and pipe those into a single processing node which

calculates the optical flow, as shown in Figure 3.9a. However, by setting up the

graph this way, we have ignored half of the potential pairs of frames and the output

framerate will be half of the camera framerate. In Figure 3.9a, we also want to

compare shot1 from iteration 0 with shot0 from iteration 1, shot1 from iteration 1

with shot0 from iteration 2, and so on.

This is achieved using a delay node, a FIFO buffer that delays a data pulse for

one or more iterations of the graph. The new graph sends the shot result down two

paths, as shown in Figure 3.9b. The first connects the shot directly to the processing

node; this is the current frame. The second connects the incoming shot to a delay

node, the output of which is the frame from the previous frame. On the first iteration

of the graph, the image is passed into the delay node, which returns a null image to

be passed downstream. On the second iteration, the delay node stores the new image

and returns the image from the previous iteration.
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(a) Naive implementation of optical flow which combines pairs of frames. One output is
produced for every two input frames.
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(b) Improved implementation of optical flow, using a delay node. After the first frame, the
optical flow node will produce a new output frame for every new input frame.

Figure 3.9: Two ways to implement optical flow, with different output framerates.
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Figure 3.10: HDR video using alternating short and long exposures. A delay node
allows the long frame of one iteration to be combined with the short frame of the
next.

This illustrates an important consequence of using a delay node: in order to

maintain the invariant that every node executes once per iteration of the graph, the

delay node must produce something as soon as the first item is pushed in. This is a

null image (or null data pulse), which is an empty data structure with a “null” flag

set. Null images are propagated through the processing graph until they reach sink

nodes, which simply discard them.

Running live high-dynamic-range imaging with alternating long and short expo-

sures presents a similar problem to optical flow. To begin, we schedule a short and

long exposure on the image sensor, and connect them to the HDR node which merges

the two to produce a single output. This brings up the same problem as optical flow

— this graph operates on disjoint pairs of images, but we can achieve a framerate that

matches the input by also computing a result using the short frame from the current

iteration and the long frame from the previous run. Because there are two distinct

shots (rather than one as in the optical flow case) each run of the graph includes two

shot requests and produces two outputs. However, only one delay node is necessary

to link subsequent iterations of the graph, as shown in Figure 3.10.

Delay nodes provide one simple mechanism to hold state between iterations of the

otherwise stateless graph, making it easy to implement a large number of continuous

multi-frame algorithms. The following section looks at state in more detail, and

describes the functions F4graph provides to implement and control state.
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3.7 State and feedback

Many applications require some kind of state beyond linking together a continuous

sequence of shots. As one example, it is often desirable to change parameters grad-

ually while running applications on a viewfinder or capturing video, so the resulting

sequence appears smooth rather than containing abrupt adjustments in brightness or

color. This implies some state to track at least the settings for the previous frame,

so the parameter can be updated incrementally. Similarly, algorithms which track

objects or faces are often initialized with information from a previous run, so that

subsequent iterations of the algorithm need only to search a local region.

At the same time, we desire a modular abstraction with a clean separation be-

tween algorithms and the data they operate on. Embedding state into the nodes

themselves makes their operation more opaque and reduces the flexibility to reuse

them in novel ways. Additionally, many nodes are created as stateless implementa-

tions of algorithms, and so it is appropriate that we encapsulate the state variables

outside the nodes themselves. Halide functions in particular have no notion of state

that persists between executions.

Other applications need not only state, but feedback. That is, the output of

one node (typically some kind of processing or analysis) drives a parameter of node

earlier in the pipeline, such as for autoexposure or auto-white-balance (AWB). With

AWB, one node computes some color statistics and these are used to adjust the white

balance parameters. It is possible to implement this in a feed-forward fashion, where

the statistics are first computed and later applied to the same image. However, on

streaming ISPs which read pixels directly off the image sensor and only buffer a few

lines of the image, it is too late to apply any correction by the time the statistics

block has read and analyzed the last pixels of the image. Instead, feedback is used:

the AWB statistics block drives the settings for the next image, which is very likely

to be similar to the current one.

How should F4graph implement state and feedback? One option is to keep the

entire API stateless, and to implement the necessary state and feedback constructs

outside of the API. This is the approach taken by FCam, and it works for algorithms
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where the state evolves slowly. However, other algorithms update state rapidly, and

the output of one run is needed immediately on the next. In such cases, maintaining

the state outside the runtime system introduces a latency penalty, because the graph

must be modified and re-run for each state update. Conversely, it may make portions

of the user code time-critical, because settings must be immediately applied and

re-submitted to keep the pipeline busy.

Instead, state and feedback in F4graph are managed inside the graph but outside

individual nodes using specially-created feedback paths. Any values which a node

wishes to preserve for a subsequent run must be pushed to an output port, which is

connected back to an input. Because the state is external to the node, it is easy to

log the state or to drive it from other sources. Because it is within the graph, it can

run without the overhead of returning to the user.

At a high level, feedback is easy: simply connect an output port to an input port

somewhere upstream. However, this raises several concerns which must be carefully

addressed:

1. When is feedback applied — as soon as the result is ready, or a deterministic

number of iterations later?

2. Since feedback paths are inputs which do not have real values until the graph

has been executed once, what should nodes do for the first iteration?

3. Can feedback paths stall the pipeline? In other words, if the next request

depends on the result of a long-running computation, should the request be

postponed?

Both options for concern #1 have valid use cases. Applying each result as soon

as it is generated permits the tightest possible feedback loops, since the value can

be picked up immediately on the next run of the node. However, this means that

the latency (in terms of frames) might not be consistent, which is problematic for

algorithms that attempt to smoothly vary parameters or otherwise need deterministic

latency. It is actually straightforward to implement both, since these two choices

directly correspond to the behavior of statically and dynamically-assigned ports.
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In all cases, a node’s input port values are locked in when the node begins to

execute, not when the whole graph begins or partway through the execution. If a port

is statically-assigned, then the feedback values are applied immediately and replace

the old values, and the node can use them on the next iteration. Conversely, if a

port is dynamically-assigned, it contains a FIFO buffer which consumes one feedback

value on each iteration.

Thus, F4graph has two methods for creating feedback paths, connectFeedback()

and connectImmFeedback() which correspond to fixed-latency (dynamic) and imme-

diate (static) feedback respectively. As with Graph.repeat(), it would be possible

to infer feedback cycles by analyzing the processing graph, but instantiating them ex-

plicitly reduces the potential for confusion. To address challenge #2, both methods

have a required parameter which specifies one or more default values to use during the

initial runs of the graph. For a fixed-latency feedback path, the number of default

values specified controls the FIFO size and therefore the latency of the path. An

immediate feedback path needs only a single value, which is applied directly to the

port.

It might seem reasonable here to simply fill in null pulses rather than force the

user to supply default values, but this quickly becomes problematic. If a node receives

a null pulse on one of its inputs, then it also produces a null pulse, and so on down

the graph, until a null pulse gets pushed back along the feedback path, leaving the

system stuck with no results.

The answer to the third difficulty follows quite naturally from the solutions to the

first two. For immediate feedback paths, the node always has data values and will

never stall as a result. Conversely, a lack of data values on a fixed-latency feedback

path will stall the pipeline until the results become available. If such stalls (and the

resulting pipeline “bubbles”) are undesirable, the solution is to increase the feedback

FIFO depth. Otherwise, stalls are an unfortunate consequence of the requirement to

observe a fixed frame latency.

Moving to practical implementation, the code snippet below illustrates an example

of using feedback to control an auto-white-balance block.
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1 Shot* s = cam->makeShot();

2 g.addRequest(s, "shot0");

3

4 // ISP / color-correction block which applies white balance

5 // Takes two inputs: the image, and a color-correction matrix

6 HalideNode* colorCorrect = new HalideNode("ccm.kernel", "ccm_cpu_argv");

7 g.add(colorCorrect, "colorCorrect");

8 g.connect(s->result, colorCorrect->getInput("input0"));

9

10 // Estimation block which computes new white balance parameters

11 HalideNode* colorStats = new HalideNode("stats.kernel", "stats_cpu_argv"

);

12 g.add(colorStats, "colorStats");

13 g.connect(colorCorrect->result, colorStats->getInput("input0"));

14

15 // Connect the feedback loop to update parameters for the next frame

16 // Because this is a feedback loop, we must specify a default

17 uint8_t ccm[12] = {190, 0, 0, 128,

18 0, 90, 0, 128,

19 0, 0, 120, 128};

20 Image ccmDefault(ImageFormat::GRAY_U8, 4, 3, 1, ccm);

21 g.connectFeedback(colorStats->result, colorCorrect->getInput("ccm"),

ccmDefault);

An additional concern applies when the feedback controls a Request, rather than

a processing node. Because changing the parameters of a Request can alter the time

it takes to execute the request, any such requests must be dynamically scheduled.

The following code illustrates a request driven by a processing block to perform auto-

exposure. The processing block calculates a histogram of pixel brightness values for

the image, and uses this information together with the exposure time of the captured

shot to calculate an updated exposure time.

1 Graph g;

2 Camera* cam = new Camera();

3

4 Shot* s = new Shot(cam);

5 g.addRequest(s, "shot0");

6

7 // autoexpose() is a user-defined function that takes and image and

8 // returns a float (exposure time in ms).
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9 UserNode<Image, float>* autoexp =

10 new UserNode<Image, float>(&autoexpose);

11 g.add(autoexp, "autoexposure");

12 g.connect(s->result, autoexp->input);

13

14 // Drive the exposure using the result of the AE function,

15 // using immediate feedback. Use 0.25 ms as the default value.

16 g.connectImmFeedback(autoexp->result, s->exposure, 0.25);

17

18 WindowEGL* display = new WindowEGL("Example viewer");

19 g.add(display, "display");

20 g.connect(s->result, display->input);

21

22 g.executeContinuous();

3.8 Metadata

One of the key features of FCam is that metadata is returned with every shot, which

provides a way to identify each returned frame and to control the processing based on

the parameters the frame was taken with. The metadata describes what parameters

the user requested, and more importantly, the parameters that were actually applied

as the image was captured. Like FCam, metadata in F4graph is represented with

a key-value store, referred to as a set of tags. However, because F4graph describes

capture and processing on multiple imagers, we need to extend the FCam model in

two ways.

First, every node can create metadata, including Requests and processing nodes.

It isn’t sufficient to simply know the capture parameters, we also need a “processing

pedigree”. Each node class defines a standard set of tags to facilitate portability and

reuse. Every node’s input ports are used to create two sets of tags: the values which

were requested (i.e., the value of the input ports at the moment the node began to

execute), and the values which were actually applied.

Second, because the capture and processing nodes are arranged into a graph,

the metadata is arranged in a corresponding tree. Simply adding new tags to a flat

metadata store is insufficient, because in many cases there are multiple identical shots
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which form part of a single capture, and there must be some way to differentiate them.

Obviously this tree can grow indefinitely in the case of feedback paths, which can

create an IIR filter. After a few seconds of streaming, several hundred frames have

contributed to the output, creating an enormous (and generally unhelpful) glob of

metadata. To mitigate this, feedback paths strip off the tree and pass only the root

values back, although this can be disabled for debugging purposes.

3.9 Summary

Each feature of the API introduced in this chapter is designed to give application

developers as much expressive power as possible while maintaining guarantees about

the behavior of the resulting application. Constraint-based scheduling (together with

the associated rules about when and how constraints may be broken) allows developers

to specify the constraints that matter for their application, leaving flexibility to work

around hardware constraints or coexist with other applications. State storage is

modeled explicitly with the graph, making it straightforward to develop iterative

and streaming applications which rely on results from previous runs of the pipeline.

Data computed for feedback paths can be applied immediately or with a constant

frame delay. Failures are reported, and metadata records what actual capture and

processing parameters were used.

The next chapter describes the prototype hardware platform we created to imple-

ment and validate this API, discussing the design choices and purpose-built hardware

features that make a practical implementation possible.



Chapter 4

System implementation

The previous chapter introduced an abstract interface which promised stateless con-

trol of the camera capture and processing pipeline, with flexible processing and precise

timing control. This chapter describes the camera system we built to rapidly proto-

type and validate the API on real hardware, showing how particular features of the

design enable the API to perform as intended.

To achieve these goals, the camera system must support the following:

� A rich hardware environment, meaning multiple cameras, lenses, and flashes,

a high-resolution display, standard interfaces including USB and Ethernet, and

the flexibility to add more peripherals.

� Custom accelerators, which can perform image processing faster and/or more

efficiently than the CPU.

� Microsecond-level control of the attached camera hardware.

At the same time, the platform must support a standard development environment

that reasonably emulates a modern mobile device, which in practice means the system

should run Linux or Android on a multi-core CPU with a standard (i.e., complex)

memory hierarchy. Finally, the development system should be accessible for non-

expert users, meaning that the hardware designs as well as any real-time or hardware-

specific code must be automatically generated.

62
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The following sections describe how each component of our system was designed

to meet these requirements. First we show the physical hardware, and then detail

the hardware architecture used on the FPGA fabric. The following section describes

the software architecture, including code on the real-time core, in kernel space, and

in userspace. Finally, we explore the build system that produces this combined hard-

ware/software stack.

4.1 Hardware platform

In terms of hardware, the above requirements imply a sophisticated SoC which con-

tains multiple CPUs, a flexible programmable engine (such as an FPGA, course-

grained reconfigurable array, or highly-flexible DSP), cameras, hardware to receive

camera input and display graphics, and the ability to drive other common peripheral

devices. At first glance, this is very demanding feature list. However, both Xilinx

and Intel have been integrating hardened CPU cores and other peripherals with their

FPGA fabrics to produce SoCs with all of these features and more. Moreover, the

FPGA fabric can implement capabilities not included in the hardened logic, such as

integrating additional cameras or controlling other peripherals. The main contenders

in this space are the Xilinx Zynq-7000 series, the newer Zynq UltraScale+ series, and

Intel’s line of Stratix and Arria SoC FPGAs.

4.1.1 Processing platform

The original Halide-to-FPGA work described in Section 2.6 [47] used the first-generation

Zynq parts, specifically the XC7020 and XC7045. The Halide-to-FPGA compiler is

not part-specific but does depend on the Xilinx Vivado HLS toolchain, so for simple

compatibility we chose to use a Xilinx SoC.

Since the time of the original Halide-to-FPGA work, Xilinx introduced the Ul-

traScale+ series [54] of chips, which are a major step above the original Zynq-7000

parts. These include a quad-core ARM A53 processor with improved capabilities for

cache-coherency with the FPGA fabric, two ARM R5 “real-time” cores, an integrated
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Figure 4.1: Main hardware components and their interconnections.

Mali GPU, and a dedicated DisplayPort controller. In our experience, HDMI sup-

port on the Zynq-7000 was unreliable, and the limited support for cache coherency via

the accelerator coherency port (ACP) proved to be a performance bottleneck. The

hardened DisplayPort controller and high-performance coherency (HCP) ports on the

UltraScale+ parts promised to correct these shortcomings. The additional CPU and

GPU cores also enable more on-board processing, without needing a separate board

and processor for the user interface.

Given these benefits, we selected the Avnet UltraZed-EG platform [55], which is a

modestly-priced ($535 USD) system-on-module development kit for the Xilinx Zynq

UltraScale+ XZU3EG MPSoC. The system on module (SoM) design offers the op-

portunity to develop a custom baseboard (without the headache of routing the BGA

package or connecting DRAM), but for speed of development we used an off-the-shelf

baseboard, specifically Avnet’s UltraZed PCIe carrier card. The board provides an

FMC breakout connector for the FPGA I/O, as well as USB, Ethernet, and Display-

Port connections in a modest-sized package (4”×10”). Figure 4.1 summarizes the

hardware setup built around the UltraZed-EG.

Overall, the UltraZed platform worked well for our implementation. The A53 com-

plex runs Linux, which provides the conveniences of a full-fledged operating system,

while real-time-critical tasks are delegated to the R5 cores. The FPGA implements

the camera interfaces and processing accelerators, as will be described later in this

chapter. Output images are scaled with the GPU and shown via DisplayPort, while

a USB keyboard and Ethernet connection provide local and remote shell access for



CHAPTER 4. SYSTEM IMPLEMENTATION 65

development.

While this setup worked well for our initial prototype, a couple of issues could

be addressed in future. First, Xilinx and Avnet’s support for DisplayPort is neither

robust nor well-documented, so we were constrained to a particular 1080p monitor

that happens to work with the system. Second, the PCIe carrier card was an un-

fortunate compromise. We selected it because it was the only off-the-shelf carrier

card with an FMC slot, which we needed for the high-density, high-speed I/O from

the cameras. However, it dedicated one of the chip’s four gigabit transceivers to the

PCIe interface (which went unused) rather than using two for DisplayPort (which

would allow resolutions up to 4K). This could be improved in the future by building

a custom carrier board, which could also integrate the camera interface described in

the following section.

4.1.2 Camera hardware

The camera hardware needs to reasonably approximate a modern cell phone camera,

allow for multiple image sensors to be connected, and permit fine-grained, low latency

control of the module. An obvious solution is to use actual cell phone sensors, since

they are abundant, tiny, and inexpensive. However, this has two hurdles, one technical

and one logistical.

The technical challenge is merely connecting to the sensor and receiving data at

the physical level. Essentially all cell phone sensors use the MIPI (Mobile Industry

Processor Interface) CSI-2 (Camera Serial Interface 2) protocol. Since the speci-

fication is tailored for mobile devices where low pin counts and tiny connectors are

essential, CSI-2 uses a small number of high-speed (500MHz – 2GHz) differential data

lanes overlaid with low-speed (< 50 kHz) common-mode data, in a scheme known as

D-PHY.

Compared with a parallel LVDS link operating at a few hundred megahertz, D-

PHY is difficult to interface with. Fortunately, the Xilinx UltraScale+ chips have

D-PHY-capable I/O pins, which eliminates the need for external interface circuitry

— each camera clock and data lane can be connected directly to a pair of differential
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pins. Moreover, Xilinx provides a free IP core which configures the I/O pins correctly,

decodes the PHY signal, and deserializes the data to produce an output stream clocked

at typical FPGA speeds.

The logistical hurdle is that very few cell-phone image sensors have publicly avail-

able documentation and reliable sourcing options in small quantities. Although it

is possible to purchase practically any replacement sensor for a few dollars on Ebay,

these often have no public documentation at all, let alone a datasheet or register map.

One exception is the Sony IMX219 [18], which is used in the popular Raspberry Pi

V2 camera board [56]. Although the board itself is not open-source, it has been pub-

licly reverse-engineered, and a datasheet for the IMX219 has been shared online [57].

There are open-source code samples available [58] as well as designs for connecting

the camera to Zynq-based systems [59].

The sensor itself has a resolution of 3280×2464 (8MP) and physical diagonal of

4.6mm (1.2 µm pixels). Its performance and feature set is modest compared to top-

of-the-line parts used in flagship phones, but it is a decent imager that has been

adopted in a number of mid-range phones [60].

Our system uses up to four Raspberry Pi cameras and interfaces them directly

to the Xilinx D-PHY IP and a custom CSI-2 receiver. By building this interface

from the ground up, we obtain “bare-metal” control over the data processing and

timestamping. Additionally, CSI-2 specifies that low-speed configuration and control

is handled by I2C, which gives easy and direct access to the full register space of the

sensor.

The Raspberry Pi camera boards use a fixed-focus lens, so to experiment with

focus control we built our own board using commercially-available autofocus modules

integrated with the IMX219 image sensor. The popularity of the IMX219 helps

again here — only a handful of sensors can be purchased with AF modules in single-

digit quantities, and the IMX219 happens to be one of them. For simplicity of

integration, we designed our boards to be pin-compatible with the Raspberry Pi V2

camera boards. This allowed us to begin development with the latter and switch to

our customized boards when they were completed.1

1Unfortunately, our boards are not “backwards-compatible” with the Raspberry Pi, due to a
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Figure 4.2: Custom IMX219 camera board and FMC adapter board. Up to four
cameras can be connected to the adapter, which plugs into the UltraZed carrier card.

Figure 4.2 shows an image of the board and the 4-camera adapter PCB. Each

off-the-shelf camera module contains both the sensor itself and and an independently-

controlled focus module. The focus is actuated by a voice-coil motor (VCM) which

is controlled by a dedicated VCM driver chip (Dongwoon DW9714) built into the

module.

The IMX219 requires a 24MHz input clock, which is provided by a Silicon Labs

Si514 programmable oscillator. Combined with the IMX219’s internal clock tree, the

programmable clock offers the potential for “overclocking” or otherwise tweaking the

operating frequency of the image sensor. Each board also integrates an Invensense

MPU-9250 9-axis inertial measurement unit (IMU) to enable applications such as

video stabilization, rolling shutter correction, and deblurring.

The imaging modules all connect to the UltraZed via a breakout board that plugs

into an FPGA Mezzanine Card (FMC) slot.2 Each of the peripherals — the VCM

controller, IMU, and the image sensor itself — are configured over an I2C bus. Be-

cause all of the cameras have the same fixed I2C address, the breakout board contains

an I2C multiplexer that addresses a single camera module at a time. The I2C tree

cryptography chip built into the RasPi camera boards to prevent third-party camera modules from
operating with the Pi [57].

2Interestingly, Digilent released an almost identical board, the “FMC PCam adapter”, as a
product in May 2019 [61].
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Figure 4.3: I2C tree. Addresses are shown as 7 bits (without the R/W LSB). Up
to four camera boards can be connected to our FMC adapter board, each with their
own oscillator, IMU, and camera assembly.

for a two-camera configuration is shown in Figure 4.3.

Camera flashes are simulated using high-brightness LEDs of varying colors, driven

by additional GPIO pins from the FPGA.

4.2 FPGA architecture

Since the FPGA fabric is an unstructured “blank canvas”, we need a hardware ar-

chitecture which defines the macro-components and their possible interconnections

in order to automatically generate the FPGA images, drivers, and runtime system.

This architecture consists of a set of static components that are always included, plus

a set of user-defined pipelines constructed from standard modules.

The static components include the following:

� An I2C controller which controls the cameras and related peripherals.

� A GPIO register which drives the camera “enable” pins and LED flashes.

� Required logic to drive the DisplayPort clock generator, copied from the Ultra-

Zed reference design.

� A memory-mapped register that controls coherency by driving the ARPROT and

AWPROT (read and write protection) signals on all AXI buses going to main
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Figure 4.4: Configurable block types in the FPGA design, with their inputs and
outputs. FPGA designs are composed by linking these blocks together.

memory.

Figure 4.4 shows the three types of configurable components: CSI-2 receivers,

Halide processing blocks, and DMA engines which push and pull data from main

memory. All of these transfer data using AXI-stream, a minimal protocol which

consists of a variable-width data signal mediated by one-bit ready and valid signals

(designated TREADY and TVALID). An additional TLAST signal is used to mark the last

data beat of a transaction (in our case, the end of an image).3 The following sections

describe each of these in turn.

4.2.1 MIPI CSI-2 receiver

The Zynq SoCs do not have hardened CSI-2 receivers, so camera data is read and

unpacked using the FPGA. The physical interface is created using the Xilinx MIPI

D-PHY IP core (v3.1), which uses FPGA logic for high-speed deserialization and

3The specification defines a number of other optional signals, but these are not used in our
implementation.
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Figure 4.5: MIPI CSI-2 packing of four 10-bit pixels into five bytes split across two
data lanes.

generates the appropriate pin I/O and timing constraints for D-PHY signals around

1GHz. The output of the Xilinx D-PHY IP is a stream of bytes along with some

control signals indicating when a transmission is beginning, and whether the data is

valid [62].

We developed our own IP core to decode this raw byte stream while extracting

timing information. The CSI-2 data format includes a frame header with a checksum

and row headers on each line of the image, and groups of four 10-bit pixels are packed

together into five bytes, as shown in Figure 4.5. Our receiver parses the headers and

swizzles the data bits to produce complete 10-bit pixels. The result is presented as a

standard AXI-4 stream, with 2 bytes per pixel and 4 pixels per clock cycle, valid two

out of every five clock cycles. This stream can be passed directly into a processing

core or DMA engine, or reshaped into a stream with more or fewer pixels per cycle.

Because we designed our own receiver, we were able to build in three simple

features that enable and simplify the API implementation. First, the receiver can

generate interrupts when it receives the first byte of a new frame (by watching for

the frame header), and when it completes a frame (by counting the number of rows

received). These interrupt lines are routed to the real-time core, which records the

frame timestamp with a latency well under 1µs. Combined with knowledge about

the timing and buffering of the sensor, this allows the real-time system to calculate

the beginning and end of the exposure in terms of the global clock. Second, the data

output can be turned off while leaving the receiver on and the interrupts enabled. This

allows the real-time system to track the camera timing, even when the frame data is

being thrown away. This is particularly useful for tracking “dummy frames” which

are inserted to control timing — the image data is useless, but the timing information

is critical. Last, the hardware buffers the settings and applies them only on frame
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boundaries, so that the system can configure the next frame without affecting the

one currently being read. This prevents partial frames from coming out and hanging

up the downstream hardware, and relaxes the timing restrictions for configuring the

hardware. The software can configure the frame any time during the previous frame,

not only in the tiny inter-frame window.

All of these features are extremely simple: they are implemented with just a few

lines of Verilog code, and took only a couple of days to develop, test, and debug.

However, they illustrate the principle we are arguing for: a little hardware support

goes a long way. It would be trivial for SoC manufacturers to include these enabling

features in their designs, and they ought to be standard.

4.2.2 Hardware generation from Halide

We use the Halide-to-FPGA compiler developed by Pu [47] to compile Halide func-

tions into IP cores that can be integrated into the FPGA design. Each Halide function

defines an output image in terms of one or more input images or previously-defined

functions. This creates a chain of functions, from input images to final result.

When a Halide function is compiled into a software library, the inputs and output

become parameters of a C function. For a hardware accelerator, however, inputs

can be passed either as streaming ports or via memory-mapped registers. Streaming

inputs are best for image data, while registers are more suited to “process parameters”

or “tap values” where a handful of values are used to process thousands or millions

of pixels.

The FPGA extensions to the Halide language allow the developer to define both

the scope of accelerator and the type of input used for each input. Specifically, a call

to accelerate() defines the output and all of the streaming inputs. The scope of

the accelerator is everything in between, and any additional necessary inputs become

memory-mapped registers. The output is always presented as a stream.

An example from Pu [47] of the “unsharp” image filter is shown in Figure 4.6.

In a series of operations, the image is converted to grayscale, blurred and then
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Figure 4.6: Generating hardware and software from a Halide function. Each blue
circle represents a function within the code; inputs and outputs are yellow diamonds.
The parameters x and y represent the tile dimensions for the accelerator.

subtracted from the original to pick out the edges. This edge image is recom-

bined with the grayscale by a weighted addition to produce a sharper result, and

this is then applied back to the full-color image. Using the Halide accelerate call

unsharp.accelerate(clamp, x, y), everything from the output of clamp to unsharp

will be part of the hardware accelerator, with clamp being computed in software. The

result of clamp is fed as a streaming input, while weight (which was not included in

the input list of the accelerate call) is configured as a memory-mapped input.

When part of an algorithm is accelerated in hardware, the normal software func-

tion is replaced by one with the same arguments, but which configures and runs the

hardware rather than computing the result in software. The software section later

in this chapter will describe the kernel drivers and intermediate software calls which

connect compiled software library to the hardware.

There are two limitations that are a result of using the current Halide-to-FPGA

compiler. First, the system can only use FPGA acceleration for kernels which fit

into a line-buffered pipeline model. This is because the Halide-to-FPGA compiler

works by mapping Halide algorithms into line-buffered pipelines and then using a

flexible template to generate hardware following this design pattern. Unfortunately,

this excludes multiscale algorithms which work on image pyramids or require random

access to the pixels, but these kernels can still run on the CPU. Ongoing and future
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work will allow for hardware generation using other templates, such as a memory-

backed systolic array [63].

The other limitation is that Halide code must be precompiled rather than being

compiled on the fly as graphics shaders typically are, because the FPGA build process

takes tens of minutes on a desktop computer and is infeasible in any sort of runtime

context. This is an unfortunate restriction, since it limits the portability of the system.

OpenGL and Direct3D are useful APIs partly because shaders in source form can be

compiled and optimized for many different GPU architectures at runtime. It is not

necessary for the application distributor to provide binaries targeting all possible

GPUs, nor for the end user to manually recompile the entire application.

On systems with other image processing accelerators where rapid compilation is

possible, it might be feasible to relax this restriction and provide processing blocks to

the system as uncompiled Halide sources, enabling target-specific optimization as well

as optimizations across Halide nodes in F4graph. While these sorts of optimizations

are not exploited in the current system, they are active areas of research. Since we

currently only use a single demonstration platform, the need to precompile Halide

code results in only a minor complication of the build process.

4.2.3 DMA engines

Data movement between the FPGA and main memory is handled by one or more

DMA engines implemented in the FPGA fabric. For speed of development, we used

the Xilinx-provided AXI DMA (v.7.1). Each DMA engine includes a read and write

channel (less ambiguously referred to as a “memory-mapped-to-stream” or “stream-

to-memory-mapped” channel) which share a few registers and configuration bus. Each

channel consists of an AXI master port which makes read/write requests to main

memory, and a corresponding AXI-stream port which interacts with the CSI receiver

or processing module. A “complete” interrupt line from each channel is routed to the

APU cores, where it is picked up by the Linux kernel driver and triggers the next

memory operation.

The DMA engines are configured in “2D mode,” which allows them to fetch or
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write data in 2-dimensional tiles, using a small descriptor containing the starting

address, width, height, and stride. This is useful when images are processed from

memory, since breaking the image into tiles (or vertical strips) reduces the size of the

intermediate line buffers. For hardware modules connected directly to the camera

input, it isn’t possible to process the image in tiles without buffering it first, so the

processing hardware operates on the sensor line width.

The Xilinx DMA engines turned out to be one of the most troublesome components

of the system, and the most frustrating to debug. Chapter 6 discusses several ways

the DMA engine could be improved, both to fix bugs and to enable new capabilities.

4.2.4 Design patterns

CSI-2 receivers, Halide processing modules, and DMA engines are linked together

according to one of two basic design patterns. In one pattern, the data is received

from a camera (or cameras) and unpacked by a CSI decoder, optionally passed through

a processing module, and finally streamed into memory with a DMA engine. In the

other pattern, data is read from memory by one or more DMA engines, processed by

a single Halide module, and streamed back into main memory. Limiting the pipelines

to these two patterns simplifies the design of the device drivers, allowing us to reuse

most of the driver code from the Halide-to-FPGA work. Figure 4.7 shows a block

diagram of an example FPGA design that uses both of these patterns.

These two design patterns impose a number of limitations. Because Halide func-

tions (and the corresponding hardware designs) only have a single output, all process-

ing modules also produce exactly one output. Further, every output is connected to

exactly one source and controlled with a ready/valid handshake, so a camera stream

cannot be sent to multiple processing blocks in parallel. Finally, all of a module’s

inputs must come from the same source. The patterns allow multiple cameras or

multiple images from memory as inputs, but because of our software architecture

(discussed later in this chapter) it is not currently possible to feed a module with a

mix of memory and camera inputs.

However, most useful patterns can still be achieved within these limitations, at the
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Figure 4.7: Example configuration for the Zynq Ultrascale system. Here, the FPGA
logic is configured with two paths: one which captures pixels from a camera (via
cam0) processes them (demosaic0) and dumps them to memory (dma0). The second
path can pull images from memory (via dma1), process them in hardware (canny)
and write the results back to memory. The hardware blocks on the left (GPIO, I2C,
coherency controller) are included in every design.
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cost of some performance and/or FPGA resources. While multiple processing blocks

cannot be operated in series, it is straightforward to combine the Halide functions to

produce a single hardware block, possibly with switches to turn those functions on

and off. Multiple outputs can be produced by running multiple functions on the same

memory inputs. Restrictions on camera streams can be worked around by streaming

the images to memory first, and then processing them from memory.

These workarounds have a cost — additional transfers to and from memory in-

crease the latency and power consumption, and duplicated pipelines waste FPGA

resources. To allow higher performance and better sharing of resources, a more flex-

ible architecture would allow each input of a processing module to be selected from

more than one source, such as using one ISP pipeline for two cameras, or switching

between camera and memory inputs. Data could be processed by a chain of kernels,

with an option to pull it out partway or pipe data in at points other than the be-

ginning. This would require switchable connections (rather than fixed point-to-point

AXI-stream connections) and software that is able to configure the switches and feed

data using these various patterns (rather than assuming a single dataflow).

4.2.5 Design specification

Ideally, FPGA designs would be automatically generated by F4graph and dynamically

loaded as the application needs them, much as GPU shaders are. However, the

limitations of partial reconfiguration and hour-plus FPGA compile times make this

difficult. As a result, our prototype uses a pre-compiled FPGA image which can

contain hardware for multiple applications. The contents of this image are defined

by the user with a YAML configuration file, where each component is defined and

parameterized by a collection of key-value pairs. Listing 2 is an example configuration

file corresponding to the design in Figure 4.7.

Each component includes key-value pairs with the identifier to use in the hardware

design and the file path to the IP core design files. Since each component has at most

one output, connections between components are made by setting the outputto key

on each component that produces output. For DMA engines — where the stream
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width can be configured — the hardware generator adjusts the width of the stream

to match the other component. For the remaining mismatches, the hardware gen-

erator inserts a Xilinx AXI-Stream Data Width Converter between the components.

Although the stream width is converted automatically, it is still up to the user to en-

sure that the data semantics match. For example, the hardware generator can handle

the conversion between 1 pixel/cycle and 4 pixels/cycle, but cannot convert RGB to

grayscale data or unpack a 10 bits/pixel stream into 2 bytes/pixel. There is no need

to specify the AXI-lite control bus or AXI connections to DRAM; these can all be

inferred automatically.

4.3 Software architecture

The software architecture consists of three components running on different parts

of the system, as illustrated in Figure 4.8. At the lowest level is a small process-

ing thread running on one of the Zynq’s real-time processing units (RPUs), which

handles timestamping and peripheral control tasks which must happen with minimal

latency. The real-time loop runs “bare-metal” on the R5 processor, so it is able to

achieve timing precision that would be impossible within the Linux kernel. The main

application processors (APUs) run a set of Linux kernel drivers, which provide simpli-

fied access to the image processing designs implemented in the FPGA. These require

frequent attention, but not microsecond-level response times. We use kernel drivers

rather than userspace drivers in order to make use of contiguous memory buffers and

to access hardware interrupts. Between the drivers and the user application code is a

userspace library which performs request scheduling and delegates work to the kernel

drivers and real-time loop. The following sections describe each of these components,

which we will refer to the “real-time loop”, “kernel drivers”, and “APU runtime”

respectively.
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1 # Example project configuration file

2 name: example

3 productionsilicon: y

4 board: pciecc

5

6 # This example specifies two paths: One which processes data directly

7 # from a CSI receiver, and one which processes images in DRAM via DMA.

8 # Both return the images to DRAM using DMA.

9 hw:

10 - type: csi

11 name: cam0

12 clk_loc: AB6

13 data0_loc: AD8

14 data1_loc: AE7

15 i2c_loc: 2

16 path: /ip_repo/vlsiweb.stanford.edu_csi_axi_csi_1.1/

17 outputto: demosaic0

18 - type: hls

19 name: demosaic0

20 path: /ip_repo/demosaic/xilinx_com_hls_hls_target_1_0/

21 outputto: dma0

22 - type: dma

23 name: dma0

24

25 - type: dma

26 name: dma1

27 outputto: canny

28 - type: hls

29 name: canny

30 path: /ip_repo/canny/xilinx_com_hls_hls_target_1_0/

31 outputto: dma1

Listing 2: Sample project configuration file which instantiates a camera connected
to a hardware demosaicker, and a second processing module. See Figure 4.7 for a
diagram of the generated hardware design.
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Figure 4.8: The three software components (real-time loop, kernel drivers, and APU
runtime) and their interactions. The real-time dispatch loop (blue) controls the cam-
era hardware and communicates with the F4graphruntime via a shared memory mail-
box. The runtime (purple) runs in userspace and calls the kernel drivers (red) to
interact with the accelerator and DMA hardware.
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4.3.1 APU runtime

The APU runtime is a C++ library which implements the F4graph API and serves

as the glue between the user code and the hardware-specific software layers. When

the user calls Graph.execute(), it runs the scheduler (described in Section 4.3.4)

to create a timeline for the requests in the graph. It then queues up the requests

for execution. Requests which use hardware controlled by the real-time loop (CSI

cameras, flashes, and buttons) are passed to the real-time core through the shared

memory interface. For camera requests, the runtime simultaneously makes a call to

one of the kernel drivers (described in Section 4.3.3) to capture the image that will be

generated and stream it into memory. Requests which do not use real-time hardware

are simply executed by another thread on the APU.

The runtime executes downstream nodes as their data becomes available. As each

node completes, it notifies downstream nodes, which execute in turn. In the case of

Halide nodes, the runtime calls the Halide function which was dynamically loaded

from the shared object library (.so) when the node was created, which may invoke

the hardware. Because the developer specified the hardware/software boundary using

the Halide schedule, and because this interface is well defined, the Halide compiler

can automatically insert calls to the kernel drivers at that boundary. The generated

code makes a kernel driver call to allocate memory, performs whatever portion of

the algorithm was mapped into software, and then calls another driver to run the

hardware.

Since the driver calls are automatically generated and wrapped inside the software

library, the Halide function call appears essentially the same, as illustrated in Figure

4.9. The only difference is the need to pass Linux file handles to the cmabuffer and

hwacc device driver nodes.

If the graph is set to run continuously, the thread sets a timer and wakes up a

little before the end of the current schedule to launch the next scheduling iteration.

It is not necessary for the graph to finish executing before the next iteration begins,

so multiple iterations of the graph may be in flight at once.

If a graph is run continuously with Graph.executeContinuous(), the function

returns quickly while the execution proceeds asynchronously. If an error occurs during
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Func gray, blurx, blury, sharpen, ratio, unsharp;

Var x, y, c, xi, yi;

 

// The algorithm (no ordering or storage)
gray(x, y) = 0.3*in(0, x, y) + 0.6*in(1, x, y) + 0.1*in(2, x, y);

blury(x, y) = (gray(x, y-1) + gray(x, y) + gray(x, y+1)) / 3;

 

blurx(x, y) = (blury(x-1, y) + blury(x, y) + blury(x+1, y)) / 3;

sharpen(x, y) = 2 * gray(x, y) - blurx(x, y);
 

ratio(x, y) = sharpen(x, y) / gray(x, y); 

unsharp(c, x, y) = ratio(x, y) * input(c, x, y);

// The schedule (does not change functionality)
unsharp.tile(x, y, xi, yi, 256, 256).unroll(c);

Halide code

f4graph node
halide_fn(args); halide_fn(cmahandle,

hwhandle,

args);

CPU library
(Does the whole computation)

CPU-only CPU+FPGA

DMA and register configuration

CPU library
(Wrapper with CPU side code,

plus bordering, tiling, etc.)

Kernel driver

FPGA design

ioctl(hwhandle, ...)

Figure 4.9: Call stack from userspace down to the hardware. Purple arrows show
generation/parameterization from Halide; orange arrows show the call chain.

a future iteration of the graph, then an error callback is used to notify the user.

As described in Section 3.3, Graph iterations execute atomically: either the whole

iteration is schedulable and has sufficient resources to run, or no part of the graph

will execute.

4.3.2 Real-time dispatch loop

The real-time dispatch loop runs by itself on one of the ARM R5 cores. When

launched, the software configures the CSI receiver interrupts, programs the Si514

oscillators with the correct frequency for the cameras, and starts the image sensors

running. Then it enters a processing loop where it executes requests delegated by the

F4graph runtime.

To do this, the RPU loop interacts with the APU runtime via a shared memory

interface built with the Xilinx libmetal library [64]. A device tree entry reserves a

small block of memory within Linux at a specific address, and the same address and

size is configured within the RPU code. The memory block is used as a circular buffer

for communication between the APU and RPU. For each new request being delegated

to the RPU, the APU inserts a small data structure into the circular buffer with the

request type, parameters, and target execution time. On the RPU side, the realtime

loop polls the circular buffer for new requests, and copies each new request into a
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dt← targetT imeN+1 − (startT imeN + durationN)
if dt < MIN FRAME TIME then

exposure← (desired exposure for N+1) ▷ dt is ≈ 0 when working correctly.
else if dt < 2 ·MIN FRAME TIME then

exposure← dt− BLANKING TIME ▷ Not enough time for 2 frames, so use
a single extended dummy frame.

else
exposure← 100µs ▷ We have a long time to wait; just do a short frame.

end if

Algorithm 1: Calculate the exposure time for the next sensor frame given the current
time and the desired starting time for a frame.

local queue for the corresponding device. Each queue is implemented as a linked list

sorted by scheduled execution time, with the soonest first. After this check for new

requests, the main loop examines the front of each queue to determine whether it is

time to execute any requests. When it is, it takes the appropriate action, such as

toggling a GPIO pin for a flash request.

Image sensors are a bit more complex, since (unlike the flash) the sensor does

not simply operate on demand. Instead of checking every loop iteration whether the

request time has been reached, the camera control executes once per frame, just before

the sensor locks in the settings. The control routine calculates the time when the next

frame will begin and checks it against the desired time for the upcoming target frame.

If the time delta is less than one frame, then the next frame must be the target. If

the time delta is less than two frames, then we can insert a variable-length dummy

frame so that the subsequent frame will begin at exactly the target time. If the time

delta is greater than or equal to two frames, then there is time for at least two dummy

frames, so we insert the shortest possible frame now, and add any necessary padding

later. This is summarized formally in Algorithm 1. The use of “dummy frames” is

similar to the technique introduced by Ansari et al. to synchronize mutliple video

streams [65], but applied to a single camera.

Only tasks which must be executed or timestamped with microsecond-level ac-

curacy are handled by the real-time loop. It would be possible to delegate more —
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for example, the work done by the kernel drivers could be just as easily done by

the real-time loop. However, adding more tasks for the real-time loop increases the

potential latency of that loop. Keeping the accelerator interface on the Linux/APU

side also means that it is possible to work on hardware accelerators without booting

up the RPU, and that the software remains compatible with the Zynq-7000 series

parts which do not have an RPU.

4.3.3 Kernel drivers

A set of three kernel drivers perform work delegated directly by the F4graph APU

runtime and indirectly via Halide functions. One driver handles allocation of physi-

cally contiguous memory buffers, which are easier for the hardware to use but cannot

be allocated by userspace code. A second driver abstracts the DMA → accelerator

→ DMA design pattern and provides a simple queue-based interface to the software

layers above. The third driver provides a similar abstraction for transferring camera

images into memory. While the camera hardware is controlled by the RPU, the im-

age data must be read into an Linux-allocated memory buffer. To do this, the driver

maintains a queue of requests (with corresponding memory buffers) and configures

the DMA engine connected to the camera for each new image.

Reasons for kernel drivers

Some of these operations could be performed in userspace without kernel drivers,

but we chose to build kernel drivers to take advantage of hardware interrupts, which

help the drivers achieve low-latency responses without continuous polling. The other

challenge which must be handled in kernel space rather than userspace is memory

paging. Userspace buffers are scattered page-by-page across physical memory, and

userspace code is prevented from reading or controlling the physical addresses of

these pages. While it is possible for a kernel driver to walk the kernel page tables

and construct a list of physical page addresses (known in Xilinx terminology as a

“descriptor chain”) for the DMA engine to read or write using “scatter-gather” mode,

this is costly both in terms of execution time and memory. With a standard 4 kB
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page size, an 8MP RGB image is spread across 6000 pages, and the descriptor chain

itself requires a substantial 384 kB (94 pages!).

Even more importantly, paged memory cannot be accessed arbitrarily. With a

contiguous block of memory, it is possible to access sub-blocks of an image by speci-

fying an offset and stride (i.e., the address difference between subsequent rows of the

image). An image can easily be cropped or processed in tiles simply by manipulating

the offset, stride, and size. Doing this with paged memory would require re-walking

the descriptor chain even when only a small piece of the image is accessed, or using

a TLB-like structure within the hardware accelerator.

Instead, we use special buffers which are contiguous in physical memory, provided

by the aptly-named Linux Contiguous Memory Allocator (CMA). At boot time, we

allocate between 100 and 500MB for contiguous memory using the boot parameter

cma=100MB (or cma=500MB, as appropriate). Once this space is reserved, the standard

Linux kernel function dma alloc coherent() returns contiguous buffers allocated

from this memory.4 Using the CMA also solves the page-locking problem. With

paged memory, the pages must be “locked” so they are not paged out to disk, since

the hardware accelerator is unable to handle page faults. Because the CMA sidesteps

paged memory entirely, these buffers are guaranteed to be resident in memory.

The downside is that the CMA allocation size must be chosen carefully and may

never be optimal as the system load shifts. If the allocation is too large, then memory

is wasted that could have been used by the OS; if it is too small, the camera and

image-processing system may fail to allocate the memory it needs. While this was

not an issue or our system (which only runs our image-processing applications), it

could become a problem on real devices where the end user is running many programs

simultaneously.

4Despite the name, this allocation does not ensure that the buffers are kept coherent between the
CPU and FPGA hardware; that must be handled via hardware configuration or explicit flush/inval-
idation operations.
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Kernel driver interfaces

Linux provides several mechanisms for userspace code to interface with kernel drivers,

often summarized by the phrase, “everything is a file”. That is, every hardware device

attached to the system is represented by a file node in /dev, and these can be opened,

closed, and read like other files. Of course, not every possible device operation fits

into the read()/write() paradigm, so there are some additional operations to cover

these cases. More concretely, Linux device drivers implement one or more of the

following interfaces:

� read and write, which are the common operations on files. The Video4Linux

framework, for example, implements read for the user to read a frame from a

webcam or other device [66].

� mmap, which maps the contents of a “file” into the caller’s memory space. This

is typically used to create a userspace mapping into the device address space,

which allows subsequent user code to read and write registers or device memory

directly.

� ioctl, which is a sort of catch-all for other operations that drivers need to

perform, but which do not fit neatly into the other interfaces. For example, the

Video4Linux2 driver uses ioctl to set camera parameters such as resolution

and white balance settings [66].

Since the accelerator reads and writes blocks of memory (much like Video4Linux

devices), the read/write interface seems like a natural choice. However, read and

write operate on userspace buffers, which would require copying the data back and

forth from contiguous buffers or using scatter-gather DMA.

The second option is mmap. By mapping the accelerator registers into user memory

space, the user has direct control of the hardware. In many cases, mmap can be used

as a minimal kernel-mode driver, while a user-space driver does the heavy lifting.

However, if we used mmap to provide access to the hardware registers, we would still

need other mechanisms for contiguous buffers and interrupts.
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Instead, we chose to implement the interface primarily with ioctl, using custom

commands to dispatch and fetch contiguous buffers. An ioctl command takes the

form:

1 ioctl(int fd, unsigned long request, void* argp)

The three parameters are

� fd, the file descriptor which has been opened.

� request, which specifies which command to run. These commands are defined

in a header file accompanying the driver.

� argp, which is a pointer to one or more arguments for the command. Arbitrary

data can be passed with the void* pointer, provided the driver and user code

agree on the layout and semantics.

This is a raw interface with no safety net, but it provides the most flexibility of

the available driver interfaces in Unix. In a sense, each ioctl sub-command is like

its own syscall, with its own semantics and behavior.

CMA allocation driver (cmabuffer)

Because memory operations are independent of the hardware, they are wrapped in a

separate driver with two ioctl operations, GET BUFFER and FREE BUFFER. The former

allocates a buffer and populates a structure with pointers for it; the latter releases

the buffer to be used again elsewhere. To access the contents of the buffer, it must be

mapped into the program memory space, which is performed with mmap. A typical

usage follows the pattern below:5

1 int cma = open("/dev/cmabuffer0", O_RDWR);

2

3 Buffer buf;

4 buf.width = 256; // Width of the image

5Error-handling code is omitted for brevity, but proper usage would check for failures after open,
ioctl, and mmap calls.
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5 buf.height = 256; // Height of the image

6 buf.depth = 4; // Bytes per pixel

7 buf.stride = 256; // Pixels between successive lines

8

9 // Request a buffer of the size specified in buf

10 int ok = ioctl(cma, GET_BUFFER, (long unsigned int)&buf);

11

12 // Get a userspace pointer

13 long* data = (long*) mmap(NULL, buf.stride * buf.height * buf.depth,

14 PROT_WRITE, MAP_SHARED, cma, buf.mmap_offset);

15

16 // Fill the buffer with data, and do things with it

17 // ...

18

19 // Release the userspace pointer (and the corresponding kernel

structures)

20 munmap((void*)data, buf.stride * buf.height * buf.depth);

21

22 // Release the buffer

23 ok = ioctl(cma, FREE_BUFFER, (long unsigned int)&buf);

Hardware accelerator driver (hwacc)

A second driver handles the interface with the accelerator itself. The essential ioctl

command exposed by this driver is PROCESS IMAGE:

1 int id = ioctl(hwacc, PROCESS_IMAGE, (long unsigned int)bufs);

Here, bufs is a pointer to an array of Buffer structs from the CMA allocation

driver. The array contains at least an input and output image, but depending on

the algorithm, may contain multiple input images, and/or small images holding “tap

values” such as convolution weights or processing parameters.

As shown in Figure 4.10, the driver maintains a queue of buffer sets be processed,

and each call to PROCESS IMAGE drops another buffer set into that queue. Each time

the driver receives a completion interrupt, it pops the next set (if any) off the queue,

configures the DMA engines with the data addresses and sets the hardware to run.

Having an input queue greatly relieves the timing burden from the userspace code: As



CHAPTER 4. SYSTEM IMPLEMENTATION 88

queued queue

USER MODE

KERNEL DRIVER

processing queue finished queue

Accelerator

completion
interrupt

DMA

input
image

output
buffer

ioctl(PROCESS_IMAGE)

HARDWARE

ioctl(PEND_PROCESSED)

DMA

"tagged"
buffer set

input
taps

DMA
descriptor

Figure 4.10: Internal operation of the driver. PROCESS IMAGE places a buffer set onto
the queue. Each time a completion interrupt fires, the driver starts the next buffer
processing, and puts the completed one on the finished queue. PEND PROCESSED blocks
until the specified buffer set is in the “finished” queue, and then returns it to the user.
Note that the “processing queue” isn’t truly a queue, as it never holds more than one
item.
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long as there is at least one item in the queue, the driver will keep feeding the hardware

continuously with no intervention needed. This also removes the burden of setting

configuration registers in between processing runs. The configuration is bundled with

the input and output buffers, and the driver applies the values immediately before

kicking off the hardware.

Because the accelerator can be busy for hundreds or thousands of microseconds at

a time, it is not appropriate for the PROCESS IMAGE call to block the calling thread.

Instead, it pushes the set of buffers onto the queue, and immediately returns a unique

“tag” value. Later, the user code can make another ioctl call, PEND PROCESSED,

passing in the same tag. This call will block until the operation is complete, indicating

that the buffer set is free to be processed by the CPU again. If the operation has

already finished, the call simply pops the buffer off the output queue and returns

immediately.

The hwacc driver must be configured to match the hardware it is driving, including

the number of input and output streams, configuration addresses of the attached

DMA engines, and the size and datatype of the image tiles. Our initial approach was

to automatically generate a customized driver for each hardware accelerator, using

the same templating scripts that generate the FPGA project. While this works, an

approach more in line with modern embedded driver design is to use the device tree.6

Our scripts extract the necessary information from the system configuration file and

generated IP cores, and rather than parameterizing the driver, they construct a device

tree entry for each module defining its inputs and output and linking to the device

tree entries for the corresponding DMA engines. The kernel drivers read the device

tree as they are loaded and use this to configure all of the necessary parameters.

This streamlines the build process, since the drivers no longer have to be rebuilt with

every change to the the hardware design. The device tree is always rebuilt for other

reasons, so this was not an additional complication.

6A device tree is a standardized text file that defines the hardware peripherals connected to a
Linux system. The kernel reads it on boot, and uses the information to initialize and configure
kernel drivers as needed. The device tree is used primarily for embedded systems, where hardware
is connected directly to the system bus and generally does not feature autodiscovery mechanisms
present in traditional interface buses.
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Camera DMA driver (xilcam)

Ideally, the hwacc driver would be the only necessary interface to the accelerator and

DMA engines. However, hwacc is an adaption of the driver used in the original Halide-

to-FPGA work, and was designed from the start only for the DMA→ accelerator→
DMA dataflow pattern. The driver does not have any notion of camera inputs, where

data simply appears at an input without having come from main memory — and

more crucially, neither does Halide. Rather than redesign the driver and extend the

Halide code generator, it was easier for our prototype to create a simplified sibling of

hwacc to handle the Camera→ (optional) accelerator→DMA pattern.

This driver, called xilcam, provides the same queue abstraction as hwacc but

only handles the launch of the AXI-stream-to-memory side of the DMA. The camera

streaming and hardware accelerator configuration (if any) is initiated by the APU

runtime and executed by the R5 real-time loop. The operation is similar to hwacc:

the ioctl call ENROLL BUFFER requests an operation by passing a buffer to the driver

(akin to PROCESS IMAGE), and the WAIT COMPLETE call blocks until the buffer is filled

with data and ready for the user (like PEND PROCESSED). Because the input data

comes from one or more cameras, the ENROLL BUFFER call only needs to pass a single

empty buffer for the output image.

4.3.4 Scheduling

The simple goal of scheduling is to take a complete Graph and compute an execution

time for each request. The core of this task is delegated to an off-the-shelf optimization

tool, so scheduling essentially consists of the following three steps:

1. Compute the schedulable subgraphs. First, the scheduler calculates the

portion of the graph that can presently be scheduled for execution, which con-

sists of all schedulable subgraphs which no longer have any dependencies on dy-

namic events (i.e., events with non-deterministic execution time). The scheduler

is re-run after each dynamic event in order to schedule any pieces of the graph

which were constrained to that event and now have known execution times.
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2. Map the problem into solver constraints. A free variable is created for the

start time of each request, and calls to the solver API create constraints between

these variables. User-defined constraints imply >, <, or = constraints between

variables, current occupancy implies a start time after some known time point,

and device utilization implies astart > bstart+bduration OR bstart > astart+aduration,

for every pair of requests on the same device.

3. Run the solver. After the solver computes the result, the scheduler sends each

request to the hardware queue with its corresponding execution time. Finally,

if the graph is executing repeatedly, the solver sets a timer to wake up and run

the next scheduling iteration.

To implement the constraint solver, we experimented with both mixed-integer

programming and constraint programming formulations of the problem, and tried

four different solvers: MIP solvers Gurobi [67] and SCIP [68], and CP solvers Facile

[69] and Google or-tools [70].7

Mixed-integer programming seems like a natural choice for the problem — inte-

ger variables handle the various ordering permutations, and the linear programming

solution produces a real-valued time point for each request. Conversely, constraint

programming works only on finite integer domains and is tailored for combinato-

rial optimization problems. However, by discretizing time into fixed intervals, the

scheduling problem maps easily into a constraint programming framework. Using

1 µs increments provides sufficient granularity and does not appreciably slow down

the solver.

All four solvers have Python interfaces, so we were able to write a front-end

that maps scheduling problems into each of the four solvers for comparison. Figure

4.11 compares the speed of the four solvers on 350 random schedules generated by

a simulation. This test was executed on a laptop computer (Intel Core i5-5200 at

2.2GHz and 4GB RAM) using the Python bindings for each tool.

The general trend is the same for all four solvers — the solve time increases

7Gurobi 8.0.0, SCIP 5.0.1, Facile 1.3, and or-tools 6.7.1
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Figure 4.11: Comparison of solver speed on 350 randomly-generated schedules.
Solvers were set to time out after 5 seconds.

exponentially with the size of the problem — with Google or-tools and Facile out-

performing Gurobi by roughly a factor of 10 and SCIP by a factor of 100 or more

for problems with more than about 5 requests. Facile is the fastest for very small

problems, probably because it is a lightweight tool with a comparatively fast start-up

time. However, Facile is only guaranteed to find a feasible solution, not necessarily an

optimal one. Even so, Facile’s feasible solution was identical to the optimal solution

in 85% of the simulated cases.

We use the total overall schedule time as the objective function to minimize (i.e.,

max(endTimes)). Minimizing the end time for all requests (i.e., sum(endTimes)) has

the potential to free up some devices earlier, but is significantly more constrained and

more than doubles the average time to find a solution.

For the hardware implementation, we used or-tools (version 6.7.1), because it is

open-source and could be ported to the aarch64 architecture, and because it has a

supported C/C++ interface.8 Only a couple of changes to the build files and one

8Facile’s primary interface is in OCaml, and Gurobi is closed-source and does not run on aarch64.
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architecture-specific file were necessary to run on the 64-bit Zynq ARM processor.9

On the Zynq, the scheduler reliably finds an optimal solution in 1-2ms for typical

schedules with 10 or fewer requests. This is discussed in more detail later in Section

5.2.3. These are tiny optimization problems, and this scheduling overhead is small

given the duration of the schedules being computed (tens to hundreds of milliseconds).

However, if it were necessary to improve the performance of the solver, it would be

possible to “pre-solve” parts of the problem using simple rules or heuristics, and then

to use a lightweight algorithm to complete the solution. As we found with Facile,

a search for a feasible solution will frequently arrive at an optimal one; additional

heuristics might allow very rapid scheduling with near-optimal results.

4.4 Build system

The build system is an integrated collection of tools which produces software for the

application, the real-time loop, kernel drivers, the FPGA bitstream, and everything

else needed to boot the Zynq system. Figure 4.12 gives an overview of the tools and

their interactions.

4.4.1 Build inputs

The user-written input to the system consists of the following:

� Halide source code for the image processing kernels. This includes both the

algorithm and schedule, which specifies what parts (if any) will run on the

FPGA.

� Halide kernel definitions, which are short metadata files describing the param-

eters that the Halide function expects. The Halide function is compiled into a

shared library with only generic image parameters, so information about size

and datatype must be passed through the metadata file. These files could be

9The version of config.guess within the COIN sub-build had to be updated, and the ARCH K8-
specific lines in ortools/base/integral types.h were removed.
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Figure 4.12: Overview of the complete build system. From left to right, user-supplied
objects are in orange, intermediate artifacts in yellow, and outputs files in blue. Static
parts of the system are in purple boxes, and tools are shown in green.
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automatically generated with additional logic in the Halide compiler, but for

now they are written by hand.

� A hardware definition file. As described in the previous section, the hardware

definition is a YAML file naming the hardware modules and their interconnec-

tions, and providing basic board and project configuration.

� F4graph application source code, which is a C++ userspace application with

the necessary calls to the F4graph library.

Additionally, there are a set of “static” components which are not design depen-

dent, but must be compiled or installed at least once. The root filesystem for the

Linux system is created automatically by a script, and can then be further customized

by booting the system and using standard Linux tools. Our script uses a root filesys-

tem based on Ubuntu Core rather than one generated from Petalinux, which means

that the runtime software environment is essentially the same as our desktop devel-

opment environments. A full-fledged shell is available, and useful tools and packages

are easy to install via apt-get.

The F4graph library source is built as a static library which is later linked into

the final application binary. One major advantage of using an Ubuntu filesystem is

that F4graph code can be compiled on the Zynq itself. This means that all of the

dependencies (particularly Halide-HLS and Google or-tools) can be installed using

their standard build scripts and sub-dependencies can be pulled in with apt rather

than requiring a cumbersome cross-compilation toolchain.

The three kernel drivers are likewise compiled on the Zynq device. For ease of

distribution and deployment it would better to include these in the Petalinux build

flow, but for rapid iterative development it is more convenient to compile them sep-

arately. Petalinux can take several minutes to compile kernel modules, versus a few

seconds with the Linux build system.
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4.4.2 Build and development process

No development cycle is linear, much less one with as many components as our camera

system. Nonetheless, it helps to think of the development cycle and build process

in three main phases: Halide development, FPGA design, and F4graph application

development.

Halide development

A natural first step is to write the Halide code which will be used in the accelerator.

Because Halide separates the algorithm and schedule, the algorithm can be developed

and tested in a software-only environment before moving to the hardware. One way to

do this is to write an F4graph application which uses webcams or video files as input

and passes them to a software implementation of the algorithm. Once the algorithm

has been verified, it can be scheduled for the FPGA and exported.

FPGA design

Once the hardware modules have been generated from Halide, the user can move

into the FPGA development phase. This mostly consists of writing10 the hardware

definition YAML file, and then running all of the build tools to generate the outputs.

In theory this process could be automated as a single “one-button flow”, but in

practice prototype development is not linear and it is helpful to re-run the tools

individually as changes are made. Rather than a monolithic build, we use a collection

of scripts to set up each of the three major Xilinx tools (Vivado, Petalinux, and Xilinx

SDK) and then run them manually.

These scripts first read the hardware definition and inspect the referenced Halide

modules to obtain details about the inputs and output of each module. Then they

use this information with a set of templates to construct the inputs to the particular

tools. We use the Mako template engine for this task because of its simple API and

clean integration with Python. While Mako was developed with HTML generation

10Where “writing” usually means “copying an example and editing it”.
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in mind, it is sufficiently general-purpose that it works with all of the text formats

we need to generate (Tcl, device tree text, and C code).

Vivado already has an extensive scripting interface which can be used to create

and build FPGA projects, so we generate a Tcl script for Vivado that creates a new

project and compiles it into a bitstream. Petalinux does not have a scripting interface,

so instead we generate a complete project directory tree using the template and call

petalinux-build to compile it. The R5 realtime build is nothing more than cross-

compiled C/C++ code and could easily be automated with a Makefile. However, the

XSDK project creation process is quick and simple, so for the purposes of prototype

development we found it more convenient to run XSDK and take advantage of its

IDE features. The templating script simply generates some of the C code files.

The result of running Vivado, XSDK, and Petalinux is a set of files which can be

copied to the boot partition of the SD card. If the SD card is new, the user must

also run the root filesystem creation script to initialize and configure the Ubuntu root

filesystem. Once this is done, the UltraZed can boot off of the card to an Ubuntu

login prompt.

Application development

With the system booted and running, the complete F4graph application can be devel-

oped and tested. If this is a new setup, the kernel drivers and F4graph dependencies

must first be compiled; otherwise the existing installations can be reused without

modification. The software components of the Halide modules must be rebuilt for the

aarch64 architecture, and the kernel definition files placed in an accessible location.

Again, a CMake build script automates this process. The F4graph application is a

normal C++ application, and can include whatever code and libraries are necessary.

A CMake build script handles compilation and linking with the F4graph library.

4.4.3 Launch process

All of these components are initialized and launched in several phases. When the sys-

tem powers on, the bitstream is loaded into the FPGA before anything else happens.
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Then the Linux kernel boots, using the SD card as its root filesystem. The kernel

drivers are loaded and configured based on the device tree, and their handles appear

in /dev once the system finishes booting.

Prior to launching the application, a short script is executed which enables memory

coherency between the CPU and FPGA (via a single register write) and loads and

launches the realtime code on the R5 cores using the remoteproc sysfs handle (part

of Xilinx OpenAMP). Finally, the application itself is launched like any other Linux

program. It opens the driver handles, loads the shared libraries containing the Halide

kernels, and begins executing.



Chapter 5

System evaluation

This thesis has so far described a set of interfaces which enable userspace code to

execute and respond to camera-related actions with microsecond accuracy and to

interface with FPGA accelerators while hiding the peculiarities of the supporting

hardware. We have argued that a practical implementation of these interfaces requires

a real-time coprocessor, since a standard multi-core application processor running

Linux is unable able to meet the desired timing specifications. This chapter provides

experimental data to support these assertions, ranging from micro-benchmarks that

measure system overheads to complete applications that demonstrate the performance

and usability of the proposed API and our prototype system.

The following section begins with a series of micro-benchmarks which quantify

the timing precision possible on both the APU and RPU. We find that although the

APU can achieve very good timing precision, doing so reliably essentially requires

reserving a CPU core for time-critical tasks. Given that a CPU must be reserved, it

makes sense to use a Zynq RPU core rather than one of the full-featured application

processors. Building on these results, the next section steps up the stack and explores

the overheads that are incurred in our FPGA prototype. These include launching

FPGA operations, synchronizing between the userspace process and the real-time

core, and running the user-level software framework. While most of these overheads

are minor, we find that the cost of initiating FPGA operations is substantial, and

discuss how future systems could reduce this overhead. The final section moves

99
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up one more conceptual level to measure the runtime behavior of several complete

applications built with F4graph.

5.1 Timing

This section evaluates the timing performance of our prototype camera system. First

we review the timing constraints for peripherals on our prototype platform. Then

we benchmark the timing performance of the A53 running Linux against the RPU

running our bare-metal control loop, testing their accuracy both for initiating and

responding to events.

5.1.1 Timing constraints

Several pieces of hardware impose timing constraints on the system, the most obvious

of which is the image sensor. The IMX219 latches its settings with a vertical-sync

signal once per frame, so the “configuration window” for each frame includes the

entire previous frame. Given a maximum frame rate of 180FPS, the configuration

window is 5.5ms. As another point of reference, the On Semiconductor AR1011HS

uses a similar latching scheme but is capable of framerates up to 1200FPS, for a

minimum configuration window of 830 µs.

Inertial measurement units require similar timing precision, with typical sample

rates between 200 and 1000Hz[49]. Units such as the Invensense MPU-9250 include

a small “digital motion processor” which handles task of sampling the sensors at a

high rate and performing sensor fusion, specifically so that the host processor can

sample the orientation at a lower rate. However, using the IMU for optical image

stabilization or rolling shutter correction requires multiple orientation samples per

frame, pushing the host processor timing requirements back into the 3-5ms range.

Far more stringent than either of these requirements is the flash. With a rolling-

shutter camera, the timing of a flash will be visible within one or two lines of the

image. For the IMX219 operating at full resolution with 2 data lanes, one line of the

image corresponds to about 19µs; at reduced resolution and 180FPS, this drops to
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9 µs. Said another way, the sensor settings must be configured once per frame, the

IMU read several times per frame, and the flash driven several hundred times per

frame.

5.1.2 Interrupt latency

Given these timing requirements, we can evaluate the timing precision both the APU

running Linux and the R5 RPU running our bare-metal dispatch loop. There are

several scenarios which must be considered as part of a complete understanding of

“timing precision.” For timestamping events such as receiving the beginning of a

frame or a shutter-button press, we need to examine the external interrupt latency

— the interval between the event occurring and the processor reacting to record the

timestamp.

On the RPU, the interrupt latency is easy to measure: the IRQ is configured to

set an output pin high as soon as the interrupt occurs. The interrupt is triggered

by external hardware, and a logic analyzer measures the interval between the inter-

rupt signal and the response pin. Over 10,000 trials, the latency from the interrupt

pin being driven high to the response pin going high was approximately uniformly

distributed between 550 ns and 785 ns, meaning that any timestamp has a potential

error of ±235 ns.
The interrupt latency on the APU is slightly more complex. Following good

design practice, our kernel driver interrupt handlers are split into two parts, known

in Linux terminology as the “top half” and “bottom half” [71]. The top half is called

immediately in response to the interrupt, but runs in a restricted context where it

cannot do anything that might block or fail (at the risk of a kernel panic). As a

result, the top half’s only job in our implementation is to queue the bottom half for

execution and to mark the interrupt as handled. The bottom half does the actual

work of the interrupt handler. As with the R5, we trigger the interrupt with an

external pin, and each half of the handler sets an output pin high. The test was run

both with the Zynq APU cores idle and at full load. The results are summarized in

Figure 5.1 along with the R5 results.
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Figure 5.1: Interrupt latency for RPU (running a bare metal ISR), and APU (captured
in a Linux kernel driver). The kernel driver is split into a top and bottom half, and
behaves differently under load, so all four permutations are shown here.

In general, the APU responds within the timeframes outlined in the previous

section — on average, executing the top-half handler within 3µs of the input event

and the bottom half within 6 µs. However, there is a long tail of much slower responses.

In the samples recorded here, the timing uncertainty is as large as 13µs, and even

longer intervals may occur on rare occasions. This is acceptable for frame-level or

even sub-frame timing, but falls short for recording or synchronizing events at the

scanline level.

5.1.3 Dispatch latency

To quantify the precision with which the system can launch actions, we must examine

the time to execute each iteration of the dispatch loop on the RPU. The current

implementation of the loop is not strictly deterministic — the time for each iteration

depends on what actions (if any) are being processed. When idle, the loop runs in

2.7 µs. The longest delay is incurred when initiating the I2C transaction to reconfigure
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Figure 5.2: Output captured by a logic analyzer while rapidly toggling a GPIO pin
from a userspace thread with the system under heavy load. The solid blue regions
indicate when the task is running. The task is switched out at intervals of 8-12
milliseconds, severely limiting the timing precision of a userspace thread.

the image sensor for the next frame, which stretches the loop time to 14µs. Only one

long-delay action is allowed to run per loop iteration, guaranteeing that a single flash

request will execute within 14 µs (about one scanline) of the scheduled time.

To maintain this guarantee, a production system would need to prevent many

time-sensitive requests from stacking up at the same time. This could easily be

achieved by applying system-level scheduling constraints (e.g., any two flash requests

must be 3µs apart). Applying these constraints has the added benefit of making

this low-level system limitation visible to the user rather than silently introducing

unexpected behavior.

The APU cores are more powerful processors running at a higher peak clock

rate (1.1GHz vs 500MHz), so an equivalent loop on the main processor would run

faster. However, we also have to account for preemption due to running within a

multitasking OS. To measure preemption delays, we created a userspace program

that drives a square wave on an output pin at 1MHz and monitored the output with

a logic analyzer. This test was run using the default scheduler in the Petalinux 2017.2

kernel (Linux 4.9.0), and with the task at the default priority level. With the system

idling or running light tasks, the process runs continuously without interruptions.

Since the Zynq has four APU cores, one core can continue uninterrupted while the

other three handle intermittent operating system tasks. Under heavy load, the task

begins to be switched out for intervals of about 12ms, as illustrated in Figure 5.2.

Of course, it is possible to tune the scheduling parameters of the Linux kernel and
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configure the priority and scheduling behavior of the task to minimize the possibility

and duration of these interruptions. If we take this approach to its logical end, we

are dedicating a processor core to this real-time task, which is exactly what we are

advocating. However, there is no need for a large and power-hungry application

processor; a low-power, low-speed processor is sufficient. The real-time dispatch loop

does not require intense processing; it simply needs continuous attention.

5.1.4 Camera dispatch

The image sensors have their own timing qualities, since they are clocked indepen-

dently of the main processor. As described earlier, the sensors are configured during a

window of several milliseconds while the previous frame is being captured. The actual

timing of the image capture is controlled by inserting dummy frames with a variable

exposure, and we can analyze this to obtain a quantitative error bound on the timing

error between two frames. The exposure for the IMX219 is set in increments of the

row readout time, which means that our overall timing granularity is determined by

the row readout time. Given a random target time for the beginning of the frame, we

can achieve the nearest integer multiple of the row time, leaving a random residual

error up to half of the row time.

To confirm this, we ran a simple experiment: a test program running on the RPU

generated random target timestamps for a series of 1000 frames, and attempted to

capture frames at those times. A histogram of the timing error (the actual frame

timestamp minus the target) is shown in Figure 5.3. As anticipated, the error is a

uniform random distribution from −trow/2 to +trow/2. In this case, trow = 18.8 µs

and the timestamps are only taken to the nearest microsecond, giving an error range

from −9 µs to 10 µs. With two or more cameras, the error between any pair becomes

a symmetric triangular distribution centered at 0 and ranging from −trow to +trow.

This means that two cameras capturing side-by-side will be synchronized within one

scanline.
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Figure 5.3: Histogram of the timing error for 1000 frames scheduled for random
timepoints. The system is able to reliably hit the timepoint within 10 µs, half of the
the image sensor’s row readout time.

5.1.5 Timestamping

Finally, the timing precision is potentially affected by the time required to read from

the 100MHz global clock.1 To measure this, we executed a test on both the RPU

and the APU from userspace: A function executes a loop 100,000 times, reading the

clock twice in sequence and calculating the time difference between the two reads.

This effectively calculates the time required by an entire read operation, which is an

upper bound on the timing error due to this function. Histograms of the results from

both the APU and RPU are shown in Figure 5.4.

The time to read the clock from the RPU is typically 0.56µs, with a maximum

time of 0.58µs in our test. On the APU, the typical read time is 0.64µs, with a very

few (< 0.03%) taking longer than this. No reads took longer than 10 µs. The timing

under heavy CPU load is essentially the same, except for occasional outliers when

the thread is switched out for 8ms or more.

1This is slightly complicated by the fact that each clock read actually requires two reads and
a simple calculation to create a 48-bit clock from the two synchronized 32-bit clocks which the
hardware provides. At 100MHz, a 32-bit unsigned clock will roll over every 43 seconds.
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RPU APU

Figure 5.4: Histogram of time taken read the system clock on the APU and RPU.
Any variation introduces uncertainty into the timestamps, but both APU and RPU
reliably read the sensor in less than 1 µs. Even the handful of outliers on the APU
are less than 10 µs. Note the log scale on the vertical axis.

5.1.6 Real-time cores for real-time threads

These micro-benchmarks demonstrate the value of the Zynq RPU and of small co-

processors more generally. When the system is idle, the APU is easily capable of

timing precision on the order of 10 µs, and even userspace applications can operate this

precisely without any special tricks. However, this degrades precipitously to about

10ms/100Hz when the system reaches full load. Additionally, the timing behavior

on the APU the behavior is stochastic, which is problematic if the application cannot

tolerate failures.

Of course, many knobs can be tweaked to adjust timing response of the system —

increasing the thread priority, changing the kernel task scheduler, or even designating

an entire core for a task. Each of these tweaks effectively reserves all or part of a CPU

core for a specific thread, generally at the cost of overall throughput. We satisfy this

need by using the Zynq RPU for high-precision camera tasks, since simple processors

are cheap and in the case of the Zynq Ultrascale+ chip, already built in. In this

way, the timing-critical thread runs uninterrupted, and applications access it through

a limited and structured API. User applications can specify the timing constraints

which matter and allow the system to handle the rest, maximizing flexibility and

overall throughput while meeting the needs of the application. We now turn to



CHAPTER 5. SYSTEM EVALUATION 107

examine the cost of this allocation and API.

5.2 Runtime performance and overhead

The previous section demonstrated the value of a real-time coprocessor for achieving

precise timing. But the benefits are not free: sharing work between the APU and

RPU takes some processor time, creating “overhead”. This is true more generally;

the abstractions proposed in this thesis all require resources to implement. On the

hardware side we must consider the cost of delegating work to the FPGA accelerator

and to the real-time core; on the software side the request scheduler and runtime

framework both introduce overhead. The rest of this section examines the cost of

implementing these abstractions.

5.2.1 FPGA Acceleration

Although the purpose of an FPGA accelerator is to reduce the work done by the host

CPU, a substantial amount of work is required to configure and launch the accelerator

and to synchronize with the hardware again when it completes. Depending on what

task is being accelerated and how, the time taken to manage the accelerator can be

larger than the computation time that was saved. This section details each of the

subtasks that contribute to this overhead, explaining why they exist and what can

be done in future systems to reduce, amortize, or completely eliminate them.

First, as described in Section 4.3.3, our FPGA accelerators work best with special

contiguous memory buffers which are allocated by a kernel driver, and allocating these

buffers takes a significant amount of time. While running a benchmark application

with 72 × 72 RGB image tiles (15kB per tile), the driver spent an average of 120 µs

to allocate each pair of input and output buffers — larger than the amount of time

spent actually processing the image. By profiling the benchmark application with

the Linux perf utility, we find that the majority (82%) of the time time taken by

the GET BUFFER call is spent inside the Linux kernel function dma alloc coherent.

Kernel functions make up a similar fraction of time spent on the FREE BUFFER call.
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Figure 5.5: Timeline of hardware and software operations while processing two image
tiles in sequence, showing the sequence of calls and the overheads incurred. As long as
multiple tiles have been queued up, the critical path between completing one tile and
launching the next takes about 13.5 µs. The remaining software overhead overlaps
with the accelerator run and does not reduce the overall processing throughput.

There is no way around the basic need for contiguous buffers: the other option

is to identify all of the pages which compose a userspace buffer and write this into a

scatter-gather table for the DMA engine, which demands even more from the kernel.

However, it is not necessary to allocate a new buffer for every image tile, or even to

make a kernel request for every allocation. If the amount of memory is known (or

even estimated) beforehand, a pool of buffers can be preallocated at the start and this

time can be amortized over the entire runtime of the application. When our driver is

configured to do this, claiming a slab of pre-allocated memory takes a mere 2µs, and

releasing it is similarly fast.

In addition to memory allocation, the kernel drivers take time responding to inter-

rupts, switching between multiple threads, and actually configuring the accelerator

for each processing run. Figure 5.5 shows a representative timeline of the hardware

and software activity while processing two image tiles in sequence. The CPU-based

work can be broken into two categories based on whether it lowers the overall through-

put of the system or merely consumes CPU cycles while the accelerator is running.

The first category consists of the driver’s critical path from receiving the “accelerator
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finished” interrupt through setting the accelerator running on the next image tile

(inside dma launch work). To measure the hardware downtime due to this software

overhead, we used the Xilinx integrated logic analyzer (ILA) to capture the cycle-

by-cycle operation of an accelerator while the aforementioned benchmark application

was running. The benchmark application queued up multiple image tiles so that the

kernel driver was always supplied with image data to process. For our benchmark

accelerator working on 72 × 72 RGB tiles at 150MHz, a single processing run takes

72.8±0.3µs. There is a gap of 10-35 µs between runs while the software re-launches the

accelerator. The first re-launch can be slow (around 30 µs) but subsequent intervals

average 13.5 µs2.

This critical path for re-launching the accelerator can be broken into three pieces:

First is the latency from the time the hardware raises the interrupt signal until the

interrupt handler begins running. As detailed in Section 5.1.2, this time is on the

order of 2-3 µs. Second is the execution of the top and bottom halves of the inter-

rupt handler. The time here is mostly spent acquiring a mutex to safely move the

completed buffer between queues and switching threads between the top and bottom.

Finally, the dma launch work thread is woken up and it proceeds to write the regis-

ters of the DMA engine and accelerator. This routine completes in about 7µs, most

of which is actually consumed by the register writes themselves.

The second category of overhead includes processes which execute while the accel-

erator is running rather than during the reconfiguration interval. While these opera-

tions do represent CPU cycles which do not directly contribute to processing image

data, they overlap with the accelerator run and do not reduce the overall throughput.

Using perf, we measured the overall CPU utilization while continuously processing

tiles was 43% of one CPU core,3 versus < 1% when the system is idle. Said another

way, 37 µs worth of CPU cycles are consumed for each run of the accelerator.

Neither of these categories can be eliminated, but they can both be reduced in

several ways. First, the re-launch time is essentially constant and can easily be

amortized by using larger tiles or otherwise doing more computation per accelerator

2Figure 5.5 shows the typical “warm” timing representative of processing many tiles in sequence.
An actual run with only two tiles would take slightly longer.

3In practice, the work is distributed across two or three cores, using a smaller fraction of each.
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invocation. Given the line-buffered pipeline architecture of the accelerator, taller

tiles do not require any more internal storage and are essentially free to implement.

Wider tiles do require more intermediate storage, but may also be an option to further

amortize the overhead.

Another option is to make the hardware more intelligent such that it can per-

form tiling on its own. We make the case later for an improved DMA engine; adding

multi-tile processing would be a natural extension. A final option is to delegate the

tiling and accelerator orchestration to a small CPU core like the Zynq RPU, much as

we have already done for camera tasks. With such an arrangement, the APU could

delegate an entire image for processing with a single command and leave the copro-

cessor to complete the work. Compared to doing tiling in hardware, this approach is

more flexible (and can even be reconfigured on the fly), while maintaining fast and

deterministic interrupt responses and eliminating the need for thread switching.

5.2.2 RPU offload

Another overhead is the cost of transferring work from the APU to RPU via the shared

memory interface. To quantify this, we created a benchmark application where the

APU sets an external pin high and then notifies the RPU by writing to the shared

memory mailbox. When the RPU receives the message, it sets the pin low again.

We executed this transaction 10,000 times and monitored the output pin with a logic

analyzer.

The shared memory interface itself is extremely fast (approximately 250 ns per

transaction), so the overhead is essentially determined by how frequently the RPU

checks the mailbox. Our implementation polls the mailbox once per iteration of the

processing loop, resulting in an average response time under 3 µs. While it would

be possible to go slightly faster by using interrupts to notify the processor of new

messages, the benefit would be negligible given that the RPU cannot dispatch events

faster than the processing loop can run.
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Figure 5.6: Time taken by the APU to schedule graphs of various sizes while running
the complete applications described in this chapter. In general, the number of con-
straints is roughly equal to the number of requests.

5.2.3 Scheduler

The hardware action scheduler is at the heart of our method for separating the user

from hardware timing concerns, but it too incurs some overhead. Section 4.3.4 de-

scribed the scheduler implementation and compared the performance of various con-

straint solvers on the scheduling problem; here we examine that overhead in the

context of the prototype hardware system.

Figure 5.6 shows the time spent by the APU to schedule graphs of various sizes

while running the applications described in this chapter (viewfinder, stereo, flash-

flag, and others). Applications which schedule only one or two requests at a time

are dominated by the startup time of the scheduling library, and typically execute in

3-5ms. Additional requests increase the scheduling time only slightly, and scheduling

up to 13 requests still completes in around 6ms.
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Figure 5.7: Breakdown of the CPU time spent by the APU (milliseconds per frame)
while running a streaming application which captures images, processes them in soft-
ware with Halide, and sends the result over the network to a remote computer. Note
that the labeled times represent work done across multiple cores, so the wall time
elapsed per frame is lower than their sum.

5.2.4 Graph execution framework

The final component which introduces overhead is the userspace runtime that runs

the complete processing graph. One way to measure this is to run a complete F4graph

application while monitoring the system with perf. Figure 5.7 shows a breakdown

of the CPU execution time while running a simple application which captures images

from a single camera, processes them, and streams them over the network.

The measurable overhead of the framework is small, since the framework does very

little besides chaining image processing operations together. In this example, more

than 90% of the CPU time is spent inside the processing nodes. Of the remaining

time spent running the application, 3.5ms per frame (3.4%) is spent scheduling the

graph (discussed in the previous section) and 3.9ms (3.8%) is spent copying data

from a contiguous buffer to a normal userspace buffer for downstream processing.

The rest of the framework takes less than 3% of the overall runtime.

The real opportunity to improve performance is not by reducing the CPU foot-

print of the graph framework code, but rather by using the graph framework to fully
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utilize the computing resources. In our prototype system, the user can explicitly cre-

ate threads within F4graph as well as split image processing kernels across multiple

threads using Halide, but it is challenging to achieve optimal parallelism this way

without extensive experimentation. Possible ways to improve this are discussed in

Chapter 6.

5.3 Applications

The previous sections examined the performance of various components of the sys-

tem; this section looks at the overall system behavior with three sets of applications.

We begin with a fairly typical viewfinder and capture application. This shows how

the API works in a simple application and illustrates how the system allows multiple

graphs to share resources. This is followed by a set of applications which demonstrates

the timing precision of the end-to-end system in terms of its ability to synchronize

events or launch actions with exact timepoints. The final group of applications illus-

trate how the system performs under load and with errors.

5.3.1 Viewfinders and basic capture

The examples in Chapter 3 illustrated a number of simple graphs which stream or

capture shots. In this section, we combine them into a complete viewfinder/snapshot

application. The application should behave like a typical camera app: a live view

of the camera is shown on the screen, possibly with a set of viewfinder aids. When

the shutter button is pressed, a single shot is captured and saved. This demonstrates

the ability to run graphs either once or continuously, to execute multiple graphs

simultaneously, and to accelerate image processing on the FPGA.

Since this application requires actions at two different rates — the viewfinder runs

continuously at a “live” framerate, and the capture runs just once — we break it into

two separate graphs. The first executes repeatedly to capture the stream of images

for the viewfinder while the second runs when the shutter button is pushed to grab

a single snapshot. We’ll refer to these as the “viewfinder graph” and the “capture
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Figure 5.8: Parallel graphs for the basic camera application. The viewfinder (top)
captures frames continuously and routes them to a display, while the capture graph
(bottom) captures a single shot when the shutter is pressed.

graph” respectively. Diagrams of the two graphs are shown in Figure 5.8.

In the viewfinder graph, a single camera captures a stream of images, which are

processed by a HalideNode and then sent to the display. The processing node also

accepts a parameter bundle which controls two simple viewfinder aids: a zebra pattern

that highlights overexposed (clipped) areas of the image, and a Sobel filter which

highlights in-focus areas of the image. Application code can toggle these aids on the

fly.

In the capture graph, a ButtonPush request waits until the button is pushed and

then fires its event and triggers a Shot. The resulting image is passed through the

same processing (and on the FPGA, the same hardware) as the viewfinder, but with

the viewfinder aids turned off.

Figure 5.9 shows a timeline of the viewfinder process and the interruption to

capture a frame when the button is pressed. Even with an instantaneous reschedule
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Figure 5.9: Timeline of actions for the viewfinder application when the shutter button
is pressed.

time, there will be some shutter lag because of the pipeline required to configure the

sensor settings and read out the data. A solution to this (known as “zero shutter lag”,

or ZSL capture) works by continuously capturing at full resolution while watching the

shutter button. When the button is pressed, the frame captured closest to the shutter

time is kept as the final picture.

To implement this, the system must accurately timestamp the images and button-

press event, and must route the captured images both to the viewfinder and to the user

code for buffering. Both of these are straightforward in F4graph. Like the traditional

capture/viewfinder, we split the application into two graphs which run concurrently,

shown in Figure 5.10. The first drives the image capture, processing, and display,

while the second merely watches for the button press and returns a timestamp. The

application receives the completed frames in parallel with the display, and buffers the

most recent one. When the application receives the button event, it examines the

timestamp and chooses the nearest frame in time to save to disk while the viewfinder

continues running.

To confirm the timestamp accuracy in the ZSL application, we wired a strip of

LED lights to the shutter button. If the exposure time is short, the rolling shutter will

cause a clear horizontal line in the output image when the flash turns on, as illustrated

in Figure 5.11. Since the timestamps are accurate to within a few microseconds, we

can use them not only to select the correct frame, but also to predict exactly where the
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Figure 5.10: Parallel graphs for the ZSL camera application.

readout

Image row 0

row N

flash

Figure 5.11: A brief flash during a rolling-shutter readout will appear as a bright
horizontal band in the output image.
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Figure 5.12: Example shots of a strip of LED lights captured with zero shutter lag
using a very short exposure. The lights were wired to an external switch which also
served as the shutter button. The red line highlights the scanlines of the image which
were exposing when the “shutter” was first pressed according to the event timestamps,
and this precisely matches the first rows of pixels to see the LEDs turn on.

flash line will occur in the image4. Figure 5.12 shows two example shots captured with

this setup annotated with the edge of the flash band calculated from the timestamps.

5.3.2 Precise timing and synchronization

The zero-shutter-lag application demonstrates the ability of F4graph to accurately

timestamp events. In this section, we show several applications which test the ability

to synchronize requests in various ways. The first, which we have already discussed

briefly, is to capture a stereo pair at exactly the same time for depth estimation via

disparity. To do this with F4graph, we simply schedule one Shot to occur at the same

time as the other:

1 Shot* left = new Shot(leftCam);

2 Shot* right = new Shot(rightCam);

3 g.addRequest(left, "left");

4 g.addRequest(right, "right");

5

6 g.schedule(left, AT, right.start, +0);

4Specifically, image row = (button timestamp− frame start timestamp)/18.903µs
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Figure 5.13: Demonstration of top-of-frame synchronization, and output of stereo
pipeline (where brighter pixels indicate larger disparity).

The corresponding processing graph was introduced as an API example in Figure

3.8. The left and right images are fed into a single processing block which produces

the stereo result.

To perform depth processing on the FPGA, we adapt the algorithm used by Pu et

al. [47]. The two input images are assumed to be rectified such that the epipolar line

is horizontal,5 and the image streams coming from the cameras are passed through a

simplified demosaicker which produces a grayscale image. Then, a 9×9-pixel patch
surrounding each pixel in the left image is compared with patches along the epipolar

line in the right image using the sum of absolute differences (SAD) metric. The offset

producing the closest match is assumed to be the correct disparity.

Figure 5.13 shows a pair of images of a spinning fan and a PWM-dimmed light

string captured with the synchronized cameras. The rolling shutter artifacts are

clearly visible in the distortion of the fan blades and the alternating horizontal bands

where the lights (which appear to the naked eye to be steadily on) are turned on and

off. Because the cameras are synchronized, these artifacts are identical across the two

cameras and the stereo disparity estimation is not compromised.

Just for fun, we can use carefully-timed flashes synchronized to a rolling-shutter

exposure to produce pictures. Figure 5.15 shows a simple setup to capture the Amer-

ican flag, using a total of eleven requests on three separate flashes. Programmatically

creating requests to make the stripes is easy with a for loop:

5In our test setup, the images straight from the camera have some misalignment and distortion
and would benefit from proper calibration and rectification.
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Figure 5.14: Demonstration of top-of-frame synchronization using a flash. The first
two images are a left/right pair, and the third is an amplified difference image. The
flash brightens the same horizontal slice of both images, indicating that the exposures
began at the same time.

1 float stripetime = IMAGE_HEIGHT / 13 * LINE_TIME;

2

3 FlashRequest* stripesRight[7];

4 FlashRequest* stripesLeft[3];

5 for(int i = 0; i < 7; i++){

6 stripesRight[i] = new FlashRequest(red1);

7 stripesRight[i]->flashDuration = (unsigned int)stripetime;

8 g.addRequest(stripesRight[i], "stripe");

9 g.schedule(stripesRight[i], AT, s0->start(), i*2*stripetime/1000);

10

11 if(i > 3){

12 stripesLeft[i] = new FlashRequest(red2);

13 stripesLeft[i]->flashDuration = (unsigned int)stripetime;

14 g.addRequest(stripesLeft[i-4], "stripe");

15 g.schedule(stripesLeft[i-4], AT, s0->start(), i*2*stripetime/1000);

16 }

17 }

5.3.3 Exception handling

Finally, we turn to a couple of applications that demonstrate how the system handles

exceptions. The first is metering for a single shot

The scheduling graph for this application is shown in Figure 5.16.

Provided the computation finishes quickly, this executes like any other graph.

However, because the final capture depends on the results of the computation, this
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Figure 5.15: Setup to capture the American flag image, and the result. Three flashes
(two red, one blue) make the stripes, while an opaque barrier prevents the flashes on
each side from flooding the other half.

meter
begin

end

250 ms

final
begin

end

g.schedule(final, AT, meter.begin, +250);

software
processing

Figure 5.16: Scheduling graph for single-shot metering. A single image is captured
and processed in software to determine the parameters for another shot, captured
250ms later.
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Figure 5.17: Actual execution timelines for two representative runs of the metering
application. In the top timeline, the metering finishes in time for the shot to be
scheduled as normal, and the shot executes exactly 250ms after the metering shot.
In the bottom timeline, the software metering was artifically prolonged to 120ms.
By the time the scheduler runs, there is insufficient time to insert a dummy timing
frame to satisfy the AT constraint, so this constraint is broken and the frame is simply
executed as soon as possible. Depending on the exact timing, this may result in the
frame being captured up to one frame-time early, as shown in this example.

creates an implicit AFTER constraint to a dynamic event. Only the first shot is sched-

uled initially; the second shot must wait for the computation results. As described

in Section 3.3.2, if the computation does not finish in time the AT constraint will be

broken. Figure 5.17 shows two sample timelines from executing this graph on the

prototype system; one where the processing finishes in time, and one where it does

not.

Unlike the metering example, auto-white-balance (AWB) runs continuously on

a viewfinder or video stream. For some cameras and some applications AWB can

be applied after the image is analyzed, but if the processing pipeline operates in a

streaming fashion, then most of the image has already been fully processed by the

time the complete image statistics are known. In these cases, an effective solution is

to use the statistics from the previous frame to derive the white balance parameters
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Figure 5.18: Processing graph for the continuous AWB application.

for the current frame.

Figure 5.18 shows the processing graph for such a streaming AWB application.

The image sensor produces a single stream of frames, which are processed to produce

final white-balanced image as well new parameters for the next iteration. A feedback

path with a fixed latency of one frame pipes the calculated results back as the input

parameters for the next image.

Like the flash metering example, the analysis and white-balancing must complete

within a brief time window. However, here is the issue is not that capture constraints

will immediately fail, but instead that frames will back up in the pipeline until the

system runs out of resources. We can simulate this case simply by introducing an

artificial delay into the processing code such that each frame takes 66ms (15Hz to

process while the camera produces frames at twice that rate (33ms / 30Hz).

Within one second, the pipeline is 15 frames behind and has consumed all of

the free buffers allocated by the framework. Because the framework requires that

resources be allocated before committing a graph for execution, this depletion causes

the pipeline to stall and the repeat timing constraint to be broken. The user code is

notified of this condition via a callback.



Chapter 6

Conclusion

The previous chapters described the F4graph API and presented the performance of

our prototype platform. A key theme has been that latency-critical tasks are best

delegated to dedicated hardware where they can run without causing conflict and

interference with the main processing tasks. Latency-critical tasks are generally very

simple, so the required hardware is very modest. However, including these additional

hardware resources increases the software complexity of the overall system. This

chapter explores this trade-off, and provides suggestions for future researchers working

in this area.

6.1 Delegating tasks for high performance

The results presented in the previous chapter validate our basic claim that precise

timing requires a dedicated processor core. Most of the system is not especially

latency-sensitive — at least no more so than any other application with a live user

interface and real-time graphics — and works well with a multitasking OS running on

a multicore processor with a GPU. However, the image timestamping and peripheral

control require precision that cannot reliably be obtained with the stock Linux kernel.

As demonstrated in a number of the timing benchmarks, an application processor

running Linux exhibits response times with a “long tail.” That is, the system responds

very quickly on average, but it does not make any guarantees and a small number of

123
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events have unacceptably long responses.

While it is possible to tweak the system for better timing precision (the PRE-

EMPT RT real-time patch for the Linux kernel has existed for a decade and is close

to being merged into mainline [72]), performance issues on a multithreading OS re-

main extremely complex and intertwine many elements of the system. Moreover, the

Linux scheduler has been designed and tuned to give good performance for general-

purpose computing, and tweaks to the scheduler will likely be at the cost of overall

performance.

Instead, a more effective solution is to isolate the timing-critical pieces of the

system and execute them on their own dedicated processor. This dedicated processor

need not be powerful to be effective: the timing-critical tasks are very lightweight,

and therefore can and should run on a lightweight core.

We can take the isolation of timing-critical tasks one step further by building

custom hardware. For example, our custom CSI receivers include features which

reduce the timing burden on the CPU and increase its effective precision. Because the

receiver generates an interrupt at the start of each frame, the processor can determine

the frame timestamp without repeated polling. Likewise, because the configuration

registers are saved immediately but do not take effect until the next frame begins,

the processor can simply “set and forget” the configuration once per frame.

As with dedicated processor cores, the custom hardware need not be complex to

be effective. A trivial module that triggers an interrupt may be sufficient to release

a CPU from spending all of its time polling a register, or a module which triggers an

action on a particular clock cycle may relax the timing constraints on the processor

by an order of magnitude or more. For reference, our CSI receivers are implemented

with only 370 LUTs each, which is a minuscule 0.5% of the overall fabric.

If there were even stricter timing constraints to be met, or dozens more devices

to control, the natural solution would be to build small hardware units to handle

individual tasks with the needed precision. For example, flash control units could

be designed with registers for the start and end time, and the unit could watch the

clock and fire the flash at the programmed interval. The CPU could configure these

units ahead of time on a less stringent schedule, and let them complete their tasks
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independently. Likewise, the Xilinx I2C controller could be replaced by a custom

design that can handle an entire transaction without intervention.1

6.2 Managing complexity

Delegating timing-critical tasks to dedicated processor cores and custom hardware is

essential for performance, but the expanded capability and additional hardware both

introduce complexity. This raises two issues. First, how should an application devel-

oper (“the user”) access the capabilities of the system without needing to understand

the implementation? Second, adding another heterogeneous processor means that

there is another code base, another build system, and another thread to debug. This

becomes even more complex when custom hardware is added because its thread of

control cannot be accessed by a traditional software debugger. We examine each of

these in turn.

6.2.1 Harnessing capability

The F4graph API is designed to expose the rich capture capability of host camera

platform without requiring detailed knowledge of the hardware. It does this by al-

lowing a user to specify a set of requests on the hardware and timing relationships

between them, and the system assumes responsibility for executing the requests such

that the desired timing is preserved. Since certain timing relationships may be in-

valid or impossible to achieve, every collection of requests and timing relationships is

analyzed to find a feasible schedule before being accepted for execution. If a schedule

is found, then the system guarantees that the requests will execute and all statically

analyzable relations will be maintained. Constraints relative to non-deterministic

events (whether an external signal or the completion of a task on the multi-tasking

CPU) are kept on a best-effort basis.

1I2C is particularly slow, since the bus itself runs at a mere 400 kHz and a simple 8-bit read
transaction can take 100µs or more. Our prototype system uses an interrupt-based interface to
avoid blocking for this entire time, but the I2C driver configuration is still the slowest task the R5
is responsible for.
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This constraint model allows the user to specify only the timing relationships that

matter, leaving flexibility for the schedule to be fit on various platforms or runtime

contexts. Further, it allows the system to make meaningful guarantees while providing

a fallback to “best-effort” in cases where a strict guarantee is infeasible. With our

prototype system and the demonstration programs described in the previous chapter,

we are able to schedule and execute Requests with a temporal accuracy matching

individual scanlines and to timestamp events even more precisely.

6.2.2 Build and debug tools

The build system for our demonstration platform manages complexity by automating

most of the build process based on a straightforward system-wide configuration. As

described in in Section 4.4, the developer specifies the design using a simple config-

uration language and includes references to hardware modules created with Halide.

The rest of the build is automatically built and packaged based on this configuration,

including the FPGA bitstream, the Zynq hardware configuration, the bootloaders,

device tree, and Linux kernel.

As mentioned in Chapter 4, the Xilinx DMA engines were one of the most trouble-

some parts of the system. The exact conditions necessary to complete a transaction

and generate an interrupt were not well-defined and misconfigurations could lock up

the hardware, necessitating a driver reset or complete reboot. If we had the project

to do over, we would design a DMA engine from scratch, optimized for streaming

images with minimal CPU intervention and built for debugging.

A redesigned DMA engine would have the ability to operate on a circular buffer

of 2D images (i.e., defined by width, height, and stride), relaxing the level of synchro-

nization required between the software and hardware. A dozen or so image buffers

could be programmed directly into configuration registers, eliminating the need to

fetch scatter-gather descriptors from memory and sidestepping the corresponding co-

herency issues. The engine would use a simple and well-defined completion and error

model: a “complete” interrupt is raised when the last byte of a frame is received

and the sender simultaneously asserts TLAST. If the sender asserts TLAST early, or the
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DMA reaches the end of the buffer without receiving TLAST, an “error” interrupt is

raised and the engine halts.2

For debugging purposes, we would include the ability to “single-step” the DMA

operation, transferring exactly one beat of data to or from the stream with each

register write. New debugging registers would mirror the present stream values,

allowing them to be read directly. Finally, the ability to discard or inject exact

amounts of data would make it straightforward to debug issues where a component is

expecting more (or less) data than is actually produced, causing the pipeline to stall.

Together with appropriate software, these features would turn the DMA engine

into a software-controlled AXI-stream logic analyzer, making it simple to investi-

gate coherency issues or to check the inputs and outputs of processing blocks. If

the hardware pipeline execution is considered a thread of control — it is launched,

works independently, and then is “joined” back to a CPU thread — these debug-

ging features would function much as a software debugger does, allowing breakpoints,

single-stepping, and inspection or modification of values. A software library on the

host would manage this hardware-based debugger, making it possible to automate

hardware tests and easily debug drivers or other code that interacts with the hard-

ware. The Xilinx FPGA integrated logic analyzer is ill-suited for these tasks, since it

must be compiled into the design ahead of time, has a narrow capture window,3 and

cannot be controlled by software running on the device. In the same way that our

custom CSI receiver implemented simple hardware features that made software easier,

a customized DMA engine would simplify the software design and greatly accelerate

debugging.

2The TLAST signal indicates that the sender has transmitted the final beat of data. Since the
image size is known, the buffer can be made exactly the right size. Together, these semantics simply
ensure that the received data matches what was expected. There is no need to handle cases where
too much or too little data is received; these can be flagged as errors.

3An integrated logic analyzer can capture tens of thousands of samples, but this is insufficient
when processing images with millions of pixels.



CHAPTER 6. CONCLUSION 128

6.3 Directions for future work

While the F4graph API is general and capable of describing and controlling many

potential processing graphs, the current prototype has several limitations. First, as

described in Section 4.2.4, FPGA designs are currently limited to one of two basic

design patterns with no option to chain multiple operations without going back to

memory or to conditionally execute part of a pipeline.

A more flexible FPGA architecture would make it possible to pack multiple accel-

erators into one FPGA design, and to stream data between them without going back

to main memory — or, with the flip of a configuration bit, to skip over an accelerator

or stream the intermediate results to memory. To do this, the system would need

more capable DMA engines and reconfigurable AXI-stream routers, and the design

specification and build system would need to be extended to support these additional

components. More sophisticated kernel drivers would also be needed to manage the

run-time hardware configuration.

Going even further, the prototype system could make use of the partial reconfig-

uration facility of the FPGA to dynamically load accelerators as needed by different

applications. Or the fixed-function pipelines could be replaced by other reconfigurable

fabrics or programmable image processing hardware. The graph processing API itself

is agnostic to the specifics of the hardware accelerator, and could work with any of

these.

A second improvement which would streamline application development and im-

prove performance is to integrate F4graph more deeply with Halide. The system

currently treats Halide as a sort of black-box plugin, where monolithic chunks of

Halide code (which may or may not make use of hardware accelerators) can be exe-

cuted as graph nodes. However (as we discussed in Chapter 2) a string of optimized

kernels does not necessarily produce an optimal implementation of a complete appli-

cation, so for best performance developers must manually merge and optimize blocks

of Halide code before including them in F4graph. If a future system were able to un-

derstand and operate directly on Halide code, it would be possible to automatically

merge and optimize blocks of processing code, improving modularity and reuse and
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saving developers time.

Depending on the sophistication of the system, this could go beyond merging

sequential blocks of Halide code and allow whole sections of the processing graph to

be compiled and optimized together. Consider for example the auto-white-balance

algorithm which takes statistics generated from one frame and uses them to compute

color-correction parameters for the next. If this algorithm were coded as a Halide

node along with the statistics and color-correction nodes, then an improved F4graph

could compile and optimize this feedback loop as a complete unit and implement it

on whatever piece of the hardware was most effective. In the best case, the calls to

and from the graph framework could be elided entirely and the algorithm could run

without intervention from the APU. While the overhead of the graph framework is

small, eliminating it would allow the best possible performance for applications with

tight feedback loops.

These remain active areas of research, and we look forward to the innovations and

improvements developed in future systems.
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