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Abstract

Digital cameras are becoming increasingly cheap and ubigsii leading researchers to
exploit multiple cameras and plentiful processing to aeather and more accurate rep-
resentations of real settings. This thesis addressessis$geale in large camera arrays. |
present a scalable architecture that continuously streaios video from over 100 inex-
pensive cameras to disk using four PCs, creating a one gigdearar-second photometer.
It extends prior work in camera arrays by providing as muahtrd over those samples as
possible. For example, this system not only ensures thaiaitmeras are frequency-locked,
but also allows arbitrary, constant temporal phase shétsvéen cameras, allowing the
application to control the temporal sampling. The exibl@amting system also supports
many different con gurations, from tightly packed to wigetpaced cameras, so appli-
cations can specify camera placement. Even greater éibd provided by processing
power at each camera, including an MPEG2 encoder for videgoession, and FPGAs
and embedded microcontrollers to perform low-level imageessing for real-time appli-
cations.

| present three novel applications for the camera arrayhigtlight strengths of the

architecture and the advantages and feasibility of workith) many inexpensive cam-
eras: synthetic aperture videography, high speed videbgrand spatiotemporal view
interpolation. Synthetic aperture videography uses naagemoderately spaced cameras
to emulate a single large-aperture one. Such a camera canreagh partially occluding
objects like foliage or crowds. | show the rst synthetic #apee images and videos of
dynamic events, including live video accelerated by imageps performed at each cam-
era. High-speed videography uses densely packed cametastaggered trigger times
to increase the effective frame rate of the system. | show teosompensate for artifacts

\Y



induced by the electronic rolling shutter commonly usedgxpensive CMOS image sen-
sors and present results streaming 1560 fps video usingrB2rea. Spatiotemporal view
interpolation processes images from multiple video casmgraynthesize new views from
times and positions not in the captured data. We simultasig@xtend imaging perfor-
mance along two axes by properly staggering the triggergioienany moderately spaced
cameras, enabling a novel multiple-camera optical ow aatifor spatiotemporal view
interpolation.
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Chapter 1
Introduction

Digital cameras are becoming increasingly cheap and ubigsii In 2003, consumers
bought 50 million digital still cameras and 84 million carmexquipped cell phones. These
products have created a huge market for inexpensive imagers lenses and video com-
pression electronics. In other electronics industriesyroodity hardware components have
created opportunities for performance gains. Exampldsidechigh-end computers built
using many low-end microprocessors and clusters of inesiperiCs used as web server
or computer graphics render farms. The commoditizationadw cameras prompts us to
explore whether we can realize performance gains using in@xpensive cameras.

Many researchers have shown ways to use more images tosedreaperformance of
an imaging system at a single viewpoint. Some combine m@stof a static scene taken
from one camera with varying exposure times to create imaggsincreased dynamic
range [1, 2, 3]. Others stitch together pictures taken from position with abutting elds
of view to create very high resolution mosaics [4]. Anothkses of multi-image algo-
rithms, view interpolation, uses samples from differeypoints to generate images of a
scene from new locations. Perhaps the most famous examihlis téchnology is the Bullet
Time special effects sequencesline Matrix Extending most of these high-performance
imaging and view interpolation methods to real, dynamimsserequires multiple video
cameras, and more cameras often yield better results.

Today one can easily build a modest camera array for the pfiaehigh-performance
studio camera, and it is likely that arrays of hundreds onexg¢housand cameras will

1



2 CHAPTER 1. INTRODUCTION

soon reach price parity with these larger, more expensiite.Uumarge camera arrays create
new opportunities for high-performance imaging and vieterpolation, but also present
challenges. They generate immense amounts of data thatb@wstptured or processed
in real-time. For many applications, the way in which theadatcollected is critical, and
the cameras must allow exibility and control over their gdanent, when they trigger,
what range of intensities they capture, and so on. To comthieedata from different
cameras, one must calibrate them geometrically and radiaaky, and for large arrays to
be practical, this calibration must be automatic.

Low-cost digital cameras present additional obstaclesrthast be overcome. Some
are the results of engineering trade-offs, such as the dodorgels used in single-chip
color image sensors. High-end digital cameras use thregarsansor chips and expensive
beam-splitting optics to measure red, green and blue valuesch pixel. Cheaper, single-
chip color image sensors use a pattern of Iter gels over ikelp that subsamples color
data. Each pixel measures only one color value-red, grebluer The missing values at
each pixel must be interpolated, from neighboring pixehgatich can cause errors. Other
obstacles arise because inexpensive cameras take advaftagaknesses in the human
visual system. For example, because the human eye is sensitielative, not absolute,
color differences, the color responses of image sensogdlaveed to vary greatly from chip
to chip. Many applications for large camera arrays will needalibrate these inexpensive
cameras to a higher precision than for their intended p@gos

1.1 Contributions

This thesis examines issues of scale for multi-camera sgséand applications. | present
the Stanford Multiple Camera Array, a scalable architecthist continuously streams
color video from over 100 inexpensive cameras to disk usmg PCs, creating a one
gigasample-per-second photometer. It extends prior wodamera arrays by providing
as much control over those samples as possible. For exath@esystem not only en-
sures that the cameras are frequency-locked, but alsosaioitrary, constant temporal
phase shifts between cameras, allowing the applicatioontral the temporal sampling.
The exible mounting system also supports many differer garations, from tightly



1.1. CONTRIBUTIONS 3

packed to widely spaced cameras, so applications can gpesiiera placement. As we
will see, the range of applications implemented and ardteig for the array require a vari-
ety of physical camera con gurations, including dense @arsp packing and overlapping
or abutting elds of view. Even greater exibility is proved by processing power at each
camera, including an MPEG2 encoder for video compressioth F#GAs and embedded
microprocessors to perform low-level image processingdal-time applications.

| also present three novel applications for the camera dhatyhighlight strengths of
the architecture and demonstrate the advantages andiligasitworking with large num-
bers of inexpensive cameras: synthetic aperture videbgragh speed videography, and
spatiotemporal view interpolation. Synthetic apertugieaigraphy uses many moderately
spaced cameras to emulate a single large-aperture one. aStenmera can see through
partially occluding objects like foliage or crowds. Thigawas suggested by Levoy and
Hanrahan [5] and re ned by Isaksen et al. [6], but implemdrdaly for static scenes or
synthetic data due to lack of a suitable capture system.wshe rst synthetic aperture
images and videos of dynamic events, including live symthegterture video accelerated
by image warps performed at each camera.

High-speed videography with a dense camera array takes@de of the temporal
precision of the array by staggering the trigger times of @sdéy packed cluster of cam-
eras to create an effectively higher resolution video camgypically, high-speed cameras
cannot stream their output continuously to disk and aretdichto capture durations short
enough to t on volatile memory in the device. MPEG encoderthie array, on the other
hand, compress the video in parallel, reducing the total bahdwidth and allowing contin-
uous streaming to disk. One limitation of this approach & the data from cameras with
varying centers of projection must be registered and coetbio create a single video.
We minimize geometric alignment errors by packing the camers tightly as possible
and choosing camera triggers orders that render artifastsdbjectionable. Inexpensive
CMOS image sensors commonly use an electronic rolling shwitech is known to cause
distortions for rapidly moving objects. | show how to compate for these distortions by
resampling the captured data and present results showeanshg 1560 fps video cap-
tured using 52 cameras.

The nal application | present, spatiotemporal view intalgtion, shows that we can
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simultaneously improve multiple aspects of imaging periance. Spatiotemporal view
interpolation is the generation of new views of a scene frarnlkection of input images.
The new views are from places and times not in the originaiuzad data. While previous
efforts used cameras synchronized to trigger simultarigolushow that using our array
with moderately spaced cameras and staggered trigger timpgsves the spatiotemporal
sampling resolution of our input data. Improved samplingl@es simpler interpolation
algorithms. | describe a novel, multiple-camera opticalv ariant for spatiotemporal
view interpolation. This algorithm is also exactly the #gation necessary to remove the
geometric artifacts in the high-speed video applicationsed by the cameras' varying
centers of projection.

1.2 Contributions of Others to this Work

The Stanford Multiple Camera Array Project represents warkedby a team of students.
Several people made key contributions that are describ#dsrihesis. The design of the
array itself is entirely my own work, but many students aidethe implementation and
applications. Michal Smulski, Hsiao-Heng Kelin Lee, MamiGoyal and Eddy Talvala
each contributed portions of the FPGA Verilog code. Neehilbslped implement the

high-speed videography and spatiotemporal view intetfpolapplications, and worked on
several pieces of the system, including FPGA code and sonme ddirger laser-cut acrylic
mounts. Guillaume Poncin wrote networked host PC softwatle avvery nice graphical

interface for the array, and Emilio Antunez improved it watlpport for real-time MPEG

decoding.

Robust, automatic calibration is essential for large camemays, and two of my col-
leagues contributed greatly in this area. Vaibhav Vaistesponsible for the geometric
calibration used by all of the applications in this thesiss kbbust feature detector and
calibration software is a major reason why the array can hektyuand accurately cali-
brated. The plane + parallax calibration method he deviseddescribed in [7] is used
for synthetic aperture videography and enabled the alyarltdevised for spatiotemporal
view interpolation. Neel Joshi and | worked jointly on cotmlibration, but Neel did the
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majority of the implementation. He also contributed manyhef key insights, such as x-

ing the checker chart to our geometric calibration target @n guring camera gains by

tting the camera responses for gray scale Macbeth chedkdises. Readers interested
in more information are referred to Neel's Masters thesjs [8

1.3 Organization

The next chapter examines the performance and applicatfqresst camera array designs
and emphasizes the challenges of controlling and captuidtg from large arrays. It re-
views multiple image and multiple camera applications taivate the construction of
large camera arrays and set some of the performance gowlsttbeld meet. To scale eco-
nomically, the Stanford Multiple Camera Array uses inexpansnage sensors and optics.
Because these technologies might be expected to interféheowrt vision and graphics
applications, the chapter closes with a discussion of iaege sensing technologies and
their implications for image quality and calibration.

Starting from the applications we intended to support asddas learned from past
designs, | set out to build a general-purpose research@ealpter 3 describes the Stanford
Multiple Camera Array and the key technology choices thatemagcale well. It summa-
rizes the design, how it furthers the state of the art, angb#ingcular features that enable
the applications demonstrated in this thesis.

Chapters 4 through 6 present the applications mentionei@etivat show the value of
the array and our ability to work effectively with many inexsive sensors. Synthetic aper-
ture photography requires accurate geometric image abghiout is relatively forgiving
of color variations between cameras, so we present it andgeametric calibration meth-
ods rst in chapter 4. Chapter 5 describes the high-speedgidmhy method. Because
this application requires accurate color-matching betwegemeras as well as good image
alignment, | present our radiometric calibration pipellrere as well. Finally, chapter 6
describes spatiotemporal view interpolation using thayariThis application shows not
only that we can use our cameras to improve imaging perfocmatong several metrics,
but also that we can successfully apply computer visionrdlyos to the data from our
many cameras.
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Chapter 2
Background

This chapter reviews previous work in multiple camera systiesign to better understand
some of the critical capabilities of large arrays and howigieslecisions affect system
performance. | also cover the space of image-based regdanohhigh-performance imag-
ing applications that motivated construction of our arrag placed additional demands
on its design. For example, while some applications neeg densely packed cameras,
others depend on widely spaced cameras. Most applicatapsre synchronized video,
and nearly all applications must store all of the video frdho&the cameras. Finally,
because this work is predicated on cheap cameras, | conttiaaddapter with a discussion
of inexpensive image sensing and its implications for oterided applications.

2.1 Prior Work in Camera Array Design

2.1.1 Virtualized Reality

Virtualized RealityM [9] is the pioneering project in large video camera arrays the
existing setup most similar to the Stanford Multiple Cameraayx Their camera arrays
were the rst to capture data from large numbers of synclmesicameras. They use a
model-based approach to view interpolation that deducesc&@e structure from multi-
ple views using disparity or silhouette information. Be@atisey wanted to completely
surround their working volume, they use many cameras spaaily around a dome or

7



8 CHAPTER 2. BACKGROUND

room.

The rst iteration of their camera array design, called tli2 Bome, used consumer
VCRs to record synchronized video from 51 monochrome CCD canjg#fa®]. They
routed a common sync signal from an external generator tof #fieir cameras. To make
sure they could identify matching frames in time from diffiet cameras, they inserted time
codes from an external code generator into the verticakiolgrintervals of each camera's
video before it was recorded by the VCR. This system trade@sitidy for capacity. With
one VCR per camera, they could record all of the video fromhalldameras for essentially
as long as they liked, but the resulting system is unwieldy expensive. The quality of
VCR video is also rather low, and the video tapes still had taliggized, prompting an
upgrade to digital capture and storage.

The next generation of their camera array, called the 3D-Rddin captured very nice
guality (640x480 pixel, 30fps progressive scan YCrCb) videonf49 synchronized color
S-Video cameras. Their arrangement once again used elxsgmasignal and time code
generators to ensure frame accurate camera synchronizakm store all of the data in
real-time, they had to use one PC for every three cameragjelR€ clusters are bulky
and a challenge to maintain, and with very inexpensive casjehe cost of the PCs can
easily dominate the system cost. Even with the PC clustey,were unable to fully solve
the bandwidth problem. Because they stored data in each P@MEBnain memory they
were limited to nine second datasets and could not contsly@iream. Even with these
limitations, this was a very impressive system when it was built six years ago.

2.1.2 Gantry-based Systems for Light Fields

The introduction of light elds by Levoy and Hanrahan [5],cehumigraphs by Gortler et
al. [12] motivated systems for capturing many images fromy wdosely spaced viewing
positions. Briey, a light eld is a two-dimensional array ¢fwo-dimensional) images,
hence a four-dimensional array of pixels. Each image isuredtfrom a slightly different
viewpoint. By assembling selected pixels from several irsagew views can be con-
structed interactively, representing observer positiooispresent in the original array. If
these views are presented on a head-tracked or autostependcsplay, then the viewing
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experience is equivalent to a hologram. These methodsreegery tightly spaced input
views to prevent ghosting artifacts.

The earliest acquisition systems for light elds used a Engoving camera. Levoy
and Hanrahan used a camera on a mechanical gantry to capeéulight elds of real
objects in [5]. They have since constructed a sphericalrg4h8] for capturing inward-
looking light elds. Gantries have the advantage of prorglunlimited numbers of input
images, but even at a few seconds per image, it can take kkweara to capture a full light
eld. Gantries also require very precise motion control,iethis expensive. The biggest
drawback, of course, is that they cannot capture light elfidynamic scenes. Capturing
video light elds, or even a single light eld “snapshot” of moving scene, requires a
camera array.

2.1.3 Film-Based Linear Camera Arrays

Dayton Taylor created a modular, linear array of linked 35cameras to capture dynamic
events from multiple closely spaced viewpoints at the same [14]. A common strip of
Im traveled a light-tight path through all of the adjacerdroeras. Taylor's goal was to
decouple the sense of time progressing due to subject maidicamera motion. Because
his cameras were so closely spaced he could create very tmgpesual effects of virtual
camera motion through “frozen” scenes by hopping from oe\d the next. His was the
rst system to introduce these effects into popular culture

2.1.4 Bullet Time

Manex Entertainment won the 2002 Academy Awardfor Best Achievement in Visual
Effects for their work inThe Matrix The trademark shots in that Im were the “Bullet
Time” sequences in which moving scenes were slowed to a teadstill while the cam-
era appeared to zoom around them at speeds that would besimlgas real life. Their
capture system used two cameras joined by a chain of overtillGthameras and improved
upon Taylor's in two ways. The cameras were physically irhejent from each other and
could be spaced more widely apart to cover larger areas,dwelgl be sequentially trig-
gered with very precise delays between cameras. Afterialigihe still images, the actors
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were segmented from them and placed in a computer-genenatgédnment that moved in
accordance with the apparent camera motion.

Like Taylor's device, this camera array is very specialgose, but it is noteworthy
because the sequences produced with it have probably ekposee people to image-
based rendering techniques than any others. They showadbibiléy of combining data
from many cameras to produce remarkable effects. The syistaiso the rst | know of
with truly exible timing control. The cameras were not justnchronized—they could be
triggered sequentially with precisely controlled delagtveen each camera's exposure.
This gave Manex unprecedented control over the timing of tameras.

2.1.5 Dynamic Light Field Viewer

Yang et al. aimed at a different corner of the multiple canaray space with their real-
time distributed light eld camera [15]. Their goal was tceate an array for rendering a
small number of views from a light eld acquired in real-timéth a tightly packed 8x8
grid of cameras. One innovative aspect of their design isrttaer than using relatively
expensive cameras like the 3D Room, they opted for inexpergimmodity webcams.
This bodes well for the future scalability of their systemt the particular cameras they
chose had some drawbacks. The quality was rather low at 3P0piels and 15fps. The
cameras had no clock or synchronization inputs, so thewiesd) video was synchronized
only to within a frame time. Especially at 15fps, the framdraome motion can be quite
large for dynamic scenes, causing artifacts in images reddeom unsynchronized cam-
eras. Unsynchronized cameras also rule out multiple viguthdalgorithms that assume
rigid scenes.

A much more limiting choice they made was not to store all & tlata from each
camera. This, along with the lower camera frame rate andutso, was their solution
to the bandwidth challenge. Instead of capturing all of taeadthey implemented what
they call a “ nite-view” design, meaning the system retufnem each camera only the
data necessary to render some small nite number of views fitee light eld. As they
point out, this implies that the light eld cannot be storemt fater viewing or used to
drive a hypothetical autostereoscopic display. Moreaa#inough they did not claim that
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had any goals for their hardware other than the light eldwiieg, the nite-view design
means that their device is essentially single-purposeanhot be used for applications that
require video from all cameras. Thus, the bandwidth probes circumvented at the cost
of exibility and quality.

2.1.6 Self-Recon gurable Camera Array

The Self-Recon gurable Camera Array developed by Zhang anchQlas 48 cameras
with electronically controlled pan and horizontal motid®]. The aim of their projectis to
improve view interpolation by changing the camera posgtiand orientations in response
to the scene geometry and the desired virtual viewpointgh electronically controlled
camera motion is an interesting property, they observetkigt system performance was
limited by decisions to use commodity ethernet cameras aidgée PC to run the array.
The bandwidth constraints of their ethernet bus limit therotv quality, 320x240 images.
They also note that because they cannot easily synchrdreaecommodity cameras, their
algorithms for recon guring the array do not track fast atigewell.

2.2 View Interpolation and High-X Imaging

All of the arrays mentioned in the previous section were Udsediew interpolation, and
as such are designed for each camera or view to capture aeup@jspective image of a
scene. This case is calleaultiple-center-of-projection (MCORjnaging [17]. If instead
the cameras are packed closely together, and the scenecigsily far away or shallow,
then the views provided by each camera are nearly identiczduo be made so by a pro-
jective warp. We call this cassngle-center-of-projection (SCORpaging. In this mode,
the cameras can operate as a single, synthetic “high-X” maénere X can be resolution,
signal-to-noise ratio, dynamic range, depth of eld, frarate, spectral sensitivity, and so
on. This section surveys past work in view interpolation high-X imaging to determine
the demands they place on a camera array design. As we willreese include exibility
in the physical con guration of the cameras, including véght packing; precise control
over the camera gains, exposure durations, and triggestiamel synchronous capture.
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Figure 2.1: Light Field Rendering uses arrays of images tateraew views of a scene.
(a) Sampling the light eld using an array of cameras. (b) Ry a new view. Each ray
in the new view is mapped to rays from the acquired imageshitngimpli ed diagram,
the rays can be mapped exactly to rays from the cameras. &lgntite exact ray from the
virtual viewpoint is not captured by any one camera, so ihisrpolated from the nearest
sampled rays.

2.2.1 View Interpolation

View interpolation algorithms use a set of captured imades €cene to generate views
of that scene from new viewpoints. These methods can bearaed by the trade-off

between the number of input images and the complexity ofritepolation process. The
original inspiration for the Stanford Multiple Camera Arrdyevoy and Hanrahan's work

on Light Field Rendering [5], lies at the extreme of using viemge numbers of images
and very simple interpolation. The light eld is the radianas a function of position and
direction in free (unoccluded) space. Using a set of camerascan sample the light eld

on a surface in space. To create a new view, one simply resartip image data. Figure
2.1 shows this in two dimensions.

Light eld rendering is an example of image-based rende(iB§r). Traditional model-
based renderers approximate physics using models of thmiiiktion, three-dimensional
structure and surface re ectance properties of a scene eMuaked rendering can produce
very compelling results, but the complexity of the modeld aendering grows with the
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complexity of the scene, and accurately modeling real sceae be very dif cult. Image-
based rendering, on the other hand, uses real or pre-rehidesiges to circumvent many of
these challenges. Chen and Williams used a set of views wattopnputed correspondence
maps to quickly render novel views using image morphs [18iTmethod has a rendering
time independent of scene complexity but requires a cooredgnce map and has trouble
lling holes when occluded parts of the scene become visible

Light eld rendering uses no correspondence maps or ex@idi scene models. As
described earlier, new views are generated by combiningesampling the input images.
Although rendering light elds is relatively simple, acqimg them can be very challeng-
ing. Light elds typically use over a thousand input imagd#$e original light eld work
required over four hours to capture a light eld of a statieise using a single translating
camera. For dynamic scenes, one must use a camera arragetiesill not hold still
while a camera is translated to each view position. Light eéndering requires many
very closely spaced images to prevent aliasing artifacteennterpolated views. Ideally
the camera spacing would be equal to the aperture size ofaanhbra, but practically,
this is impossible. Dynamic scenes require not only mudtgameras, but also methods to
reduce the number of required input views.

The Virtualized Reality [9] work of Rander et al. uses fewer gas at the expense of
increasing rendering complexity. They surround their weywolume with cameras and
then infer the three-dimensional structure of the scenegusisparity estimation or voxel
carving methods [19, 20]. Essentially, they are combinirgglet-based and image-based
rendering. They infer a model for the scene geometry, butpeencolors by resampling
the images based on the geometric model. Matusik et al. miexs@nother view interpo-
lation method, Image Based Visual Hulls [21], that uses sidtees from multiple views to
generate approximate structural models of foregroundotdbjélthough these methods use
fewer, more widely separated cameras than Light Field Ramgienferring structure using
multiple cameras is still an unsolved vision problem and$éet@® artifacts in the generated
views.

How should a video camera array be designed to allow expetsraeross this range

of view interpolation methods? At the very least, it shoulore all of the data from all
cameras for reasonable length videos. At video rates (3&psne motion, and hence the
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image motion from frame to frame, can be quite signi cant. S¥lmethods for inferring
3D scene structure assume a rigid scene. For an array of @aaeras, this condition will
only hold if the cameras are synchronized to expose at the sama. For pure image-based
methods like Light Field Rendering, unsynchronized cametiigesult in ghost images.
Light Field Rendering requires many tightly packed camepas Virtualized Reality and
Image Based Visual Hulls use more widely separated cameraarly a exible camera
array should support both con gurations. Finally, all oéfe applications assume that the
cameras can be calibrated geometrically and radiomdgrical

2.2.2 High-X Imaging

High-X imaging combines many single-center-of-projectimages to extend imaging per-
formance. To shed light on camera array design requiren@mtsis space, | will now enu-
merate several possible high-X dimensions, discuss priok im these areas and consider
how we might implement some of them using a large array of casne

High-X Imaging Dimensions

High Resolution. Images taken from a single camera rotating about its optéxatier can
be combined to create high-resolution, wide eld-of-vieWdV) panoramic image mosaics
[4]. For dynamic scenes, we must capture all of the data samebusly. Imaging Solutions
Group of New York, Inc, offers a “quad HDTV” 30 frame-per-sad video camera with a
3840 x 2160 pixel image sensor. At 8.3 megapixels per im&geid the highest resolution
video camera available. This resolution could be surpassttda 6 x 5 array of VGA
(640 x 480 pixel) cameras with abutting elds of view. Manyngpanies and researchers
have already devised multi-camera systems for generaiileg vnosaics of dynamic scenes
[22]. Most pack the cameras as closely together as possiblgaroximate a SCOP system,
but some use optical systems to ensure that the camerasehtaojection are actually
coincident. As the number of cameras grow, these opticéésysbecome less practical.

If the goal is just wide eld of view or panoramic imaging, boot necessarily high
resolution, then a single camera can be suf cient. For exantpe Omnicamera created
by Nayar uses a parabolic mirror to image a hemispherical adlview [23]. Two such
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cameras placed back-to-back form an omnidirectional camer

Low Noise. Itis well known that averaging many images of the same scasheces image

noise (measured by the standard deviation from the expeetad) by the square root of
the number of images, assuming the noise is zero-mean aondrelated between images.
Using an array of 100 cameras in SCOP mode, we should be al@dduoe image noise by
a factor of 10.

Super-Resolution. It is possible to generate a higher resolution image front afsdis-
placed low-resolution images if one can measure the campaint spread function and
register the low-resolution images to sub-pixel accur@e.[ We could attempt this with
an array of cameras. Unfortunately, super-resolutionnsifumentally limited to less than
a two-fold increase in resolution, and the bene ts of monguinimages drops off rapidly
[25, 26], so abutting elds of view is generally a better dadua for increasing image res-
olution. On the other hand, many of the high-X methods lidtede use cameras with
completely overlapping elds of view, and we should be aldeathieve a modest resolu-
tion gain with these methods.

Multi-Resolution Video. Multi-resolution video allows high-resolution (spatiatir tem-
porally) insets within a larger lower-resolution video [2@sing an array of cameras with
varying elds of view, we could image a dynamic scene at npldtiresolutions. One use
of this would be to provide high-resolution foveal inset$hin a low-resolution panorama.
Another would be to circumvent the limits of traditional smpesolution. Information
from high-resolution images can be used to increase résolaf a similar low-resolution
image using texture synthesis [28], image alignment [28jeocognition-based priors [26].
In our case, we would use cameras with narrower elds of viewdpture representative
portions of the scene in higher resolution. Another versibthis would be to combine
a high-speed, low-resolution video with a low-speed, hgsoelution video (both captured
using high-X techniques) to create a single video with hidreame rate and resolution.
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High Dynamic Range. Natural scenes often have dynamic ranges (the ratio of tesgh
to darkest intensity values) that far exceed the dynamigaaf photographic negative Im
or the image sensors in consumer digital cameras. Areas cérseghat are too bright
saturate the Im or sensor and look uniformly white, with netail. Regions that are too
dark can be either be drowned out by noise in the sensor onsingp detected due to
the sensitivity limit of the camera. Any given exposure ocdyptures a portion of the total
dynamic range of the scene. Mann and Picard [2], and Debextllalik [3] show ways to
combine multiple images of a still scene taken with diffédemown exposure settings into
one high dynamic range image. Using an array of cameras \&itfing aperture settings,
exposure durations, or neutral density Iters, we coulceextthis idea to dynamic scenes.

High Spectral Sensitivity. Humans have trichromatic vision, meaning that any incident
light can be visually matched using combinations of juseé¢hixed lights with different
spectral power distributions. This is why color cameras suea three values, roughly
corresponding to red, green and blue. Multi-spectral ilmagenple the visible spectrum
more nely. Schechner and Nayar attached a spatially vagrgipectral Iter to a rotating
monochrome camera to create multi-spectral mosaics btsghes. As they rotate their
camera about its center of projection, points in the sceremaged through different
regions of the Iter, corresponding to different portiontthe visible spectrum. After
registering their sequence of images, they create imaghswuich ner spectral resolution
than the three typical RGB bands. Using an array of camerds difterent band-pass
spectral lters, we could create multi-spectral videos ghamic scenes.

High Depth of Field. Conventional optical systems can only focus well on objedtisia

a limited range of depths. This range is called the depth &f & the cameras, and it
is determined primarily by the distance at which the camsrtbocused (depth of eld
increases with distance) and the diameter of the camertuap¢larger apertures result in
a smaller depth of eld). For static scenes, depth of eld damnextended using several
images with different focal depths and selecting, for eagblpthe value from the image
in which is is best focused [30]. The same principle could jyaliad to a SCOP camera
array. One challenge is that depth of eld is most limitedseldo the camera, where the
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SCOP approximation for a camera array breaks down. Sucdgssiplying this method
would require either an optical system that ensures a conuenter of projection for the
cameras or sophisticated image alignment algorithms.

Large Aperture. In chapter 4, | describe how we use our camera array as a lgnge s
thetic aperture camera. | have already noted that the varpwmalepth of eld caused
by large camera apertures can be exploited to look beyoriibaoccluding foreground
objects, blurring them so as to make them invisible. In gt conditions, large apertures
are also useful because they admit more light, increasiagitinal-to-noise ratio of the
imaging system. This is the one high-X application that isb@eately not single-center-
of-projection. Instead, it relies on slightly differentrters of projection for all cameras.

High Speed. Typical commercial high-speed cameras run at frame ratésiodreds to
thousands of frames per second, and high-speed video caim@va been demonstrated
running as high as one million frames per second [31]. As é&aates increase for a xed
resolution, continuous streaming becomes impossibléjtigusers to short recording du-
rations. Chapter 5 discusses in detail high-speed videaipsing the Stanford Multiple
Camera Array. Here, | will just reiterate that we use many senwith evenly staggered
triggers, and that parallel capture (and compression) jioontinuous streaming.

Camera Array Design for High-X Imaging

A camera array for High-X imaging should allow all of the nemtrol over various camera
parameters required by traditional single-camera appdica but also address the issues
that arise when those methods are extended to multiple easmdfor multiple-camera
high-x applications, the input images should generally iegvs of the same scene at the
same time from the same position, from cameras that resmamdically to and capture
the same range of intensities. Thus, the cameras shouldsigmndd to be tightly packed
to approximate a single center of projection, synchronirettigger simultaneously, and
con gured with wholly overlapping elds of view. Furthernme, we must set their exposure
times and color gains and offsets to capture the same ranigéeokities. None of these
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steps can be done perfectly, and the cameras will always samye will need to calibrate
geometrically and radiometrically to correct residuabesr

For most high-x applications, at least one parameter muslideed to vary, so a cam-
era array should also support as much exibility and contradr as many camera properties
as possible. In fact, we nd reason to break every guidelisted above. For example, to
capture high dynamic range images, we con gure the camerasrise varying intensity
ranges. Synthetic aperture photography explicitly deles$COP model to capture multi-
ple viewpoints. To use the array for high-resolution cagture must abut the elds of view
instead of overlapping them. Finally, high-speed imag#liges on precisely staggered, not
simultaneous, trigger times. Flexibility is essential.

2.3 Inexpensive Image Sensing

Nearly all of the applications and arrays presented so fed uslatively high quality cam-
eras. How will these applications map to arrays of inexpensnage sensors? Cheap
image sensors are optimized to produce pictures to be vieywddimans, not by comput-
ers. This section discusses how cheap sensors exploit megteal insensitivity to certain
types of imaging errors and the implications of these oanons for high performance
imaging.

2.3.1 Varying Color Responses

The vast majority of image sensors are used in single-caapgkcations where the goal
is to produce pleasing pictures, and human color percestmses relative differences
between colors, not absolute colors [32]. For these reasmarsufacturers of image sensors
are primarily concerned with only the relative accuracylait sensors. Auto-gain and
auto-exposure ensure the image is exposed properly, ane bdlancing algorithms adjust
color gains and the output image to t some assumption of tlerccontent of the scene.
These feedback loops automatically compensate for angti@is in the sensor response
while they account for external factors like the illumirmati Without a reference, it is often
dif cult for us to judge the delity of the color reproductio
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For IBR and high-X applications that use just one camera ttucapnultiple images,
the actual shape of the sensor's response curve (i.e. Idmpie value as a function of
incident illumination), and its response to light of diéet wavelengths, are unimportant
as long as they are constant and the response is monotorilt mvitiple cameras, differ-
ences in the absolute response of each camera becomeereldftirences between their
images. These differences can be disastrous if the imagelractly compared, either by a
human or an algorithm. A panoramic mosaic stitched togdther cameras with different
responses will have an obviously incorrect appearance) gwach region viewed indi-
vidually looks acceptable. Methods that try to establisliegponding scene points in two
images often assume brightness constancy, meaning thana point appears the same
in all images of it. Correcting the color differences betweameras is essential for these
applications.

Because so few end users care about color matching betwesarsgrariations in color
response between image sensors are poorly documentedchicpy these differences can
be quite large. In chapter 5, | will show that for the imagesses in the array, the color
responses of 100 chips set to the same default gain and erpadues varies quite widely.

2.3.2 Color Imaging and Color Filter Arrays

One key result of color science is that because the human &yetly three different
types of cones for detecting color, it is possible to repnesdl perceptually discernible
colors with just three primaries, each having linearly meledent spectral power distribu-
tions. Practically, this means that color image sensorg neéd to measure the incident
illumination using detectors with three appropriately &0 spectral responses instead of
measuring the entire spectra. Typically, these respomsesspond roughly to what we per-
ceive as red, green and blue. Each pixel in an image sens@asaalky one measurement,
so some method must be devised to measure three color contpone

High-end color digital cameras commonly use three image@srand special optics
that send the incident red light to one sensor, the greendthan and the blue to a third.
This measures three color values at each pixel, but the ertige sensors and precisely
aligned optics increase the total cost of camera.
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Figure 2.2: The Bayer Mosaic color Iter array. Each pixel ses only one of red, green
or blue. Missing color values must be interpolated from hbaying pixels.

Inexpensive, single-chip color cameras use one image serngoa color lIter array
on top of the pixels. Instead of measuring red, green and\@lees at each pixel, they
measure red, greesr blue. One example lIter array pattern, the Bayer Mosaic [38],
shown in gure 2.2. The pattern exploits two properties ofrfain visual perception: we
are more sensitive to high frequency luminance informatiean chrominance, and our
perception of intensity depends most heavily on green.ligkiery other pixel has a green
Iter, and the remaining two quarters are split between rad blue. Compared to the
three-chip solution, two thirds of the color informatiorlast at each pixel.

Mosaic images must be “demosaiced”, or interpolated, tegea a three-color RGB
values at each pixel. Naive methods to interpolate the ngssolor values, like simple
nearest neighbor replication or bilinear interpolatioan cause severe aliasing and false
colors near intensity edges. Adaptive algorithms [34, 3&fgrm better at edges, but
because the problem is ill-posed, no method will always e &f artifacts. These artifacts
can be both visually objectionable and troubling for visagorithms.

2.3.3 Inexpensive Manufacturing Methods

Manufacturing processes for cheap cameras are less pthaisd¢or expensive cameras.
Wider variations in device performance are tolerated ireotd increase yields, meaning
that image quality will suffer. For example, noisier imagasors may not be culled during
production, and wider color variations will be tolerated,raentioned previously. As we
will see in later sections on camera calibration, standardera models assume an image
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plane that is perpendicular to the lens' optical axis. Oxp@nsive sensors, however, the
dies may be tilted and rotated on the package, violatingrtiuatel.

The optical systems for cheap cameras are also of lowertgualthough glass lenses
produce better images, very cheap cameras use plastislenkgbrid glass-plastic lenses
instead. Furthermore, avoiding artifacts such as spHenchchromatic aberration requires
multiple lens elements, which will be less precisely plared cheap sensor. Less precise
placement will cause distortions in the image and more isist@ncies between the camera
and commonly used models. Finally, high-quality lensesipieadjustments to control the
aperture size and focal length, but in inexpensive lenkesgtquantities are xed.

In the next chapter, | describe the Stanford Multiple Camarayland the design de-
cisions | made in its implementation. One goal for the systeas to use cheaper, lower-
quality components and compensate for their drawbacksiwae where possible. Thus,
we chose xed-focus, xed-aperture lenses for their affaodity. Similarly, the decreased
cost and complexity of designing single-chip color camenatsveighed the disadvantages
of subsampled color due to the Bayer Mosaic. These are twomraraf the many trade-
offs involved in the design of the array.
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Chapter 3
The Stanford Multiple Camera Array

The broad range of applications for camera arrays combin#édthe promise of inex-
pensive, easy to use, smart cameras and plentiful progessitivated exploration of the
potential of large arrays of cheap cameras. In this chapfgesent a scalable, general-
purpose camera array that captures video continuouslydr@n100 precisely-timed cam-
eras to just four PCs. Instead of using off-the-shelf caméssigned custom ones, lever-
aging existing technologies for our particular goals. 1sh@€MOS image sensors with
purely digital interfaces so | could easily control the garposure and timing for all the
cameras. MPEG2 video compression at each camera reduakgahsandwidth of the sys-
tem by an order of magnitude. High-speed IEEE1394 intesfatake the system modular
and easily scalable. Later chapters show the array beirtjingevariety of con gurations
for several different applications. Here, | explain thent@alogy that makes this possible.

3.1 Goals and Speci cations

The Stanford Multiple Camera Array is intended to be a exitdsearch tool for exploring
applications of large numbers of cameras. At the very léaganted to be able to imple-
ment IBR and High-X methods similar to those described in tlevipus chapter. This
requires large numbers of cameras with precise timing obrtre ability to tightly pack or
widely space the cameras, and low-level control over theetarparameters. For the de-
vice to be as general as possible, it should capture andatatata from all the cameras. |

23
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also wanted the architecture to be modular and easily deadabt could span applications
requiring anywhere from a handful to over one hundred casagBame implication of this
scalability was that even though the array might have overtamdred cameras, it should
use far fewer than one hundred PCs to run it, ideally just afodnBinally, recon guring
the array for different applications should not be a sigant obstacle to testing out new
ideas.

To begin quantifying the speci cations of our array, | setwith the same video reso-
lution and frame rate as the 3D Room: 640x480 pixel, 30fpsnesxive scan video. 30fps
is generally regarded as the minimum frame rate for rea¢-tideo, and 640x480 is suit-
able for full-screen video. To demonstrate scalabilityymed for a total of 128 cameras. To
record entire performances, | set a goal of recording videmences at least ten minutes
long.

No off-the-shelf solution could meet these design goal® ddmeras had to be tiny and
provide a means to synchronize to each other. | also wanteelable to control and stream
video from at least 30 of the cameras to a single PC. There givwgale no cameras on the
market that satis ed these needs. By building custom cameéveas able to explicitly add
the features | needed and leave room to expand the abilitihe @ameras in the future.

3.2 Design Overview

The Stanford Multiple Camera array streams video from many GNt@age sensors over
IEEE1394 buses to a small number of PCs. Pixel data from eadosews to an FPGA
that routes it to local DRAM memory for storage or to an IEEEA88ipset for transmis-
sion to a PC. The FPGA can optionally perform low-level imagecpssing or pass the
data through an MPEG encoder before sending it to the 13®%ehi An embedded mi-
croprocessor manages the components in the camera and cicates with the host PCs
over IEEE1394. In this section, | describe the major tecbgiels used in the array: CMOS
image sensors, MPEG video compression, and IEEE1394 coiroatiam.
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3.2.1 CMOS Image Sensors

One of the earliest decisions for the array was to use CMO8adstf CCD image sensors.
CCDs are fully analog devices, requiring more careful dessgipporting electronics to
digitize their output, and often multiple supply voltagestocks. CMOS image sensors,
on the other hand, generally run off standard logic powepbeg, can output 8-or 16 bit-
digital video, and can connect directly to other logic chiensor gains, offsets, exposure
time, gamma curves and more can often be programmed intsteegjion the chip using
standard serial interfaces. Some CMOS sensors even haval tigiizontal and vertical
sync inputs for synchronization. These digital interfatedke the design simpler and more
powerful. Immediate practical concerns aside, becaud&tiggic can be integrated on
the same chip, CMOS sensors offer the potential of evolvibtg ‘ismart” cameras, and it
seemed sensible to base our design on that technology.

The many advantages of using CMOS sensors come with a price. dé@sors are
inherently noisier [36] and less sensitive than their CCD tewgarts. For these reasons,
CCD sensors are still the technology of choice for most higtioperance applications
[37]. | decided to sacri ce potential gains in image qualityexchange for a much more
tractable design and added functionality.

3.2.2 MPEG2 Video Compression

The main goals for the array are somewhat contradictoryhatukl store all of the video
from all of our cameras for entire performances, but alséeseasily to over one hundred
cameras using just a handful of PCs. An array of 128, 640x48€l,[80fps, one byte per
pixel, Bayer Mosaic video cameras generates over 1GB/seawoflata, roughly twenty
times the maximum sustained throughput for today's comigdaird drives and peripheral
interfaces. The creators of the 3D Room attacked this problestoring raw video from
cameras to main memory in PCs. With 49 cameras and 17 PCs witiBb1® main
memory, they were able to store nearly 9 seconds of videoaptuce much longer datasets
using far fewer PCs, | took a different approach: compressiagyideo.

One video compression option for the array was DCT-baseaH-freime video encoding
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like DV. Commercial DV compression hardware was either tostlgare simply unavail-
able when | built the array. MPEG2 uses motion predictionrtcogle video with a much
higher compression ratio, and Sony, one of the early spensahis work, offered their
MPEG2 compression chips at a reasonable price. A relatstaligdard 5Mb/s bitstream
for 640x480, 30fps video translates into a compressiomw m@itil4:1, and at 4Mb/s, the
default for the Sony encoder, this results in 17.5:1 congioas 128 cameras producing
5Mb/s bitstreams create 80MB/s of data, back in the ballp&ddamdwidths we might
hope to get from standard peripheral buses and striped mmesd The disadvantage of
MPEG compression is that it is lossy, meaning that one caexanttly reproduce the orig-
inal uncompressed video. | opted to use it anyway, but inrdalmvestigate the effects of
compression artifacts | designed the cameras to simulteshestore brief segments of raw
video to local memory while streaming compressed videos Tis one compare MPEG2
compressed video with raw video for array applications.

3.2.3 |EEE1394

The last piece of the array design was a high bandwidth, lexédnd scalable means to
connect cameras to the host PCs. | chose the IEEE1394 HigbrParice Serial Bus [38],
which has several properties that make it ideal for this psep It guarantees a default
bandwidth of 40MB/s for “isochronous” transfers, data tlsadent at a constant rate. This
is perfect for streaming video, and indeed many digital @idameras connect to PCs via
IEEE1394 (also known as FireWire and i-LinkR). IEEE1394 is also well suited for a
modular, scalable design because it allows up to 63 devicesoh bus and supports plug
and play. As long as the bandwidth limit for a given bus is nateeded, one can add or
remove cameras at will and the bus will automatically desaxxt enumerate each device.
Another bene t of IEEE1394 is the cabling environment. |EIEBR4 cables can be up to
4.5m long, and an entire bus can span over 250m, good news viamé to space our
cameras very widely apart, say on the side of a building.

The combination of MPEG2 and IEEE1394 creates a naturalésgot” for a large
camera array design. A full bus can hold 63 devices; if we s&teaone device for a
host PC, it can still support up to 62 cameras. 62 MPEG2 videxasts at 5SMb/s add
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up to 310Mb/s of data, just within the default 320Mb/s limittbe bus. 320Mb/s is also

well within the bandwidth of two software striped IDE hardwves, so this setup means
| could reasonably hope to require only one PC per 60 camaraari architecture. For

reasons | will discuss later, the current system suppolys2incameras per PC with 4Mb/s
bitstreams, but a more sophisticated implementation shioellable to approach a full set
of 62 cameras per bus.

3.3 System Architecture

To be scalable and exible, the system architecture had tanly meet the video capture
requirements but also easily support changes in the nunfilcaneeras, their functionality,
and their placement. Each camera is a separate IEEE13%edewi adding or removing
cameras is simple. | embedded a microprocessor to manadeHERd.394 interface, the
image sensor and the MPEG encoder. Accompanying the paydessn EEPROM for a
simple boot loader and DRAM memory for storing image data anéxecutable down-
loaded over the IEEE1394 bus. The image sensor, MPEG enanddEEE1394 chips all
have different data interfaces, so | added an FPGA for glgie |d\nticipating that | might
want to add low-level image processing to each camera, laibggher-performance FPGA
than necessary and connected it to extra SRAM and SDRAM merBepause the timing
requirements for the array were stricter than could be a&ehlieising IEEE1394 commu-
nication, especially with multiple PCs, | added CAT5 cablesdoh camera to receive the
clock and trigger signals and propagate them to two otheesiod\ll of these chips and
connections take up more board area than would t on a tingsdly-packable camera, so
| divided the cameras into two pieces: tiny camera “tilesfiteaning just the image sensor
and optics, and larger boards with the rest of the electsonic

Figure 3.1 shows how the cameras are connected to each othierthe host PCs using
a binary tree topology. One camera board is designated asdheamera. It generates
clocks and triggers that are propagated to all of the otherecas in the array. The root
is connected via IEEE1394 to the host PC and two children. AE5 cables mirror the
IEEE1394 connections between the root camera and the réisé @frray. When camera
numbers or bandwidth exceed the maximum for one IEEE139Admiase multiple buses,
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Figure 3.1: Camera array architecture

each connected to their own host PC. In this case, only onedids the root camera, and
the clock and trigger signals are routed from it to the ergiray.

3.3.1 CameraTiles

For the camera tile, | looked for a digital, color, 640x48Rqbj 30fps image sensor with
synchronization inputs. The SONY MPEG encoder requires ¥RR/format input, but
for research purposes, | also wanted access to the raw RGB Batger The Omnivision
0OV8610 was the only sensor that met these needs. The OV86%{iips 800x600 pixel,
30fps progressive scan video. Our MPEG encoder can handliesit720x480 pixel video,
but currently we use only 640x480, cropped from the centehefOV8610 image. The
OV8610 has a two-wire serial interface for programming at ledgegisters controlling
exposure times, color gains, gamma, video format, regiontefest, and more.

Early on, | considered putting multiple sensors onto oneted circuit board to allow
very tight packing and to x the cameras relative to each nthéad hoped that the rigid
positioning of the cameras would make them less likely to en@lative to each other after
geometric calibration. | constructed a prototype to tes #irangement and found that
any gains from having the cameras rigidly attached were riizne offset by the reduced
degrees of freedom for the positioning and orienting theeras Verging individually
mounted cameras by separately tilting each one is easy.iSTha possible with multiple
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Figure 3.2: A camerattile.

sensors on the same at printed circuit board without expengptics. Manufacturing vari-
ations for inexpensive lenses and uncertainty in the placewf image sensor of a printed
circuit board also cause large variations in the orientadibthe cameras. The orientations
even change as the lenses are rotated for proper focus. @Qugréese variations requires
individual mechanical alignment for each camera.

The nal cameratile is shown in gure 3.2. Two meter long rdobcables carry video,
synchronization signals, control signals, and power betwihe tile and the processing
board. The tile uses M12x0.5 lenses and lens mounts, a corsiz®ior small board cam-
eras (M12 refers to the thread pitch, and 0.5 to the radiuseoliens barrel in centimeters).
The lens shown is a Sunex DSL841B. These lenses are xed fawfia@ae no aperture
settings. For indoor applications, one often wants a largeking volume viewable from
all cameras, so | chose a lens with a small focal length, sapatture and large depth of
eld. The DSL841B has a xed focal length of 6.1mm, a xed apare F/# of 2.6, and a di-
agonal eld of view of 57 . For outdoor experiments and applications that requireomar
eld of view cameras, we use Marshall Electronics V-4358-nses with a xed focal
length of 50mm, 6 diagonal eld of view, and F/# of 2.5. Both sets of optics indduan
IR lter.

The camera tiles measure only 30mm on a side, so they can kBedpsery tightly.
They are mounted to supports using three spring-loadeavscr&hese screws not only
hold the cameras in place but also let one ne-tune theirmtaigons. The mounts let us
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Figure 3.3: 52 cameras on a laser-cut acrylic mount.

correct the direction of the camera'’s optical axis (whichyvtgpoints), but not rotations
around the axis caused by a slightly rotated image sensor.

The purpose of the mounting system is not to provide predigeraent, but to ensure
that the cameras have enough exibility so we align them hdy@ccording to our needs,
then correct for variations later in software. Being able éoge the cameras suf ciently
is critical for maintaining as large a working volume as ploles or even ensuring that all
cameras see at least one common point. Image rotationsssréniportant because they
do not affect the working volume as severely, but as we w#l ksder, they do limit the
performance of our high speed video capture method.

For densely packed con gurations such as in gure 3.3, thm&as are mounted di-
rectly to a piece of laser cut acrylic with precisely spacelgf for cables and screws. This
xes the possible camera positions but provides very ragspacing. Laser cutting plas-
tic mounts is quick and inexpensive, making it useful fortptgping and experimenting.
For more widely spaced arrangements, the cameras are ¢edriec80/20 mounts using
a small laser-cut plastic adaptor. 80/20 manufactures Wiegt call the “Industrial Erec-
tor Set’R, a T-slotted aluminum framing system. With the 80/20 systes can create
different camera arrangements to suit our needs. Figurebdaev shows some of the
arrangements built with this system.
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Figure 3.4: Different array con gurations using 80/20 m&sin

Figure 3.5: Camera processing board

31
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3.3.2 Processing Boards

The processing board for each camera represents the bufie afoist, functionality and
design effort for the camera array. The board can capturea®@efs of raw video to local
memory and stream raw or MPEG-compressed video to the hosB&tuse there are
many ways to design a board for a given functionality, | wdlver the functionality and
hardware choices at a high level and delve into details amyagpects of the design that
enable unique features of the array (such as the timing acguor made it particularly
useful for research purposes.

Figure 3.5 shows the processing board. Each of these boantigges just one image
sensor. The major components were chosen to maximize peafae at reasonable design
and manufacturing cost. The SONY CXD1922Q MPEG2 encoders whktained at a
discount for this project. | chose a Texas Instruments etifts the IEEE1394 interface
because they were a clear market leader at the time. Thgseahim a glueless interface
to Motorola Cold re processors, so | selected a Motorola MOFER processor to manage
the IEEE1394 chipset and MPEG encoder. | included 32MB of EIRAM, the maximum
the processor supports, because this sets the limit on hovh maw data each camera
can capture. An IDT72V245 8KB FIFO buffers data between tEH1394 streaming
interface and the rest of the board.

A Xilinx XC2S200 Spartan Il FPGA along with a pair of 64Mbit SDRK and a pair
of 4Mbit SRAMs provides glue logic between the different chgnd some low-level pro-
cessing power. FPGAs, (Field Programmable Gate Arrays)can gurable logic chips.
They do not fetch instructions like microprocessors. ladighey are a sea of identical,
generic logic blocks with programmable functions and icw@nect. A bit le streamed
into the FPGA con gures the function of each logic block ahe tonnections between
blocks. The bit le is speci ed using a behavioral languade|\erilog. This speci cation
is more complicated than programming a processor in C fodéségner, but is necessary
to handle non-standard data interfaces and to process videal-time.

Figure 3.6 shows the data ow through the processing boavd&tieam raw video, the
FPGA routes the incoming video straight through to the IEEEchipset for isochronous
transfer back to the host PC. For MPEG2 compressed video,etieos data is sent to
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Figure 3.6: Camera processing board block diagram

the MPEG2 encoder, and the resulting bitstream is routexlithr the FPGA back to the
IEEE1394 chipset. The FPGA can also simultaneously streédepvand capture up to
twenty uncompressed frames to the 32MB system memory usifdyr€éassisted DMA
(Direct Memory Access) transfers. The Cold re initiatesralémory accesses to the 32MB
DRAM. Without DMA transfers, the Cold re would have to read theew data from the
FPGA, then write it back to the DRAM using the same data bus. IMM& transfer, the
microprocessor signals a write to the DRAM, but the data igidexl directly by the FPGA,
eliminating the unnecessary read.

3.3.3 System Timing and Synchronization

The precise timing control over each camera in the Stanfartlipe Camera Array opens
up new research avenues that will be explored in the restigfltlesis. The cameras in
the 3D-Room and Virtualized Reality are synchronized usingridck,” the most com-

mon off-the-shelf solution for camera synchronizationnf®dek is an analog protocol that
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provides synchronization with coincident triggers, ndiigary timing, and is too costly
for inexpensive cameras. This is why the Dynamic Light Figidwer, constructed of
inexpensive webcams, is not synchronized.

The Stanford Multiple Camera Array provides accurate timivith arbitrary phase
shifts between camera triggers using the FPGAs and dedicliek and trigger lines that
run through the entire array. The one root board in the aremerates its own 27MHz
clock and sends it to two children via CAT5 cables, which thefids the clock and send
it to two more children, and so on. The root board is identiogdhe other camera boards
except for the code in one GAL and a single jumper setting. A Bh each board uses
the system clock to generate duty-cycle corrected, 27MidzZdMHz clocks. The MPEG
encoders require a 27MHz clock, but we run the microprocessmad FPGAS twice as fast
to maximize their performance.

The clock is not used for data transmission between boaoddelsly from camera to
camera is unimportant. The shared clock only ensures tHawalds are frequency-locked.
It is possible that the duty cycle degrades with each bunfeaf the clock, but the board
components require a 45%55% duty cycle. This is one reason the cameras propagate a
27MHz clock, then double it on the board with a PLL. Preseg\hne 27MHz duty cycle is
also easier because the period is twice as long, and the Furesia 50% duty cycle on the
processing boards. Propagating the system clock usingienalidepth binary tree routing
topology preserves the duty cycle by ensuring a bound gfNblgops from the root board
to any camera, as opposed to N-1 for a daisy-chained systenaldd' invert the sense of
the clock each time it is buffered, so systematic duty cyffieets in the clock propagation
circuitry are roughly cancelled. In practice, this systeonrkg quite well. The maximum
depth of our tree for a 100 camera array is eight levels, antlave tested daisy-chained
con gurations with more than 16 cameras with no problems.

Frequency-locked system clocks prevent our cameras fraftindrrelative to each
other. The FPGAs on each board generate vertical and heasizeynchronization signals
for the image sensors and the MPEG2 encoders. The encodeatlyadrive the system
timing because their requirements are very exact—NTSGgrbased on a 525 line-per-
image video with a 27MHz clock. The FPGAs timing units run thrge sensors and
MPEG encoders at exactly the same frame rate. With a comnstem\clock, this means
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that all the sensors and encoders run at exactly the samesfieg

Synchronization is more than just preventing frequencit.dwe also need to set the
relative timing of the cameras' exposures and the frame dowthe cameras start and stop
capturing video. The timing of IEEE1394 transfers, esglcfeom multiple networked
PCs, is simply too uncertain for the accuracy we need in ouesysso | put that control
directly into our hardware. The same CAT5 cables that careyclbck transmit global
triggers from the root board to the rest of the array. Thegeads route directly to the
FPGAs on the boards. They control the initial synchrontrabtr staggering of the sensor
shutter timing and the frame-accurate start of all videeastring or snapshots.

Video timing initialization is a good example of how to exeetiming-sensitive com-
mands for the camera array. The FPGAs use two video coumtehsve the vertical and
horizontal inputs of the image sensors and MPEG2 encodéespiXel counterrolls over
when it reaches the number of pixels in a line, causinditfeecounterto increment. The
line counter rolls over at 525 lines, signaling a new framac®these counters have been
initialized, they run without drift across the entire artagcause of the common system
clock. The reset values for the line counters is a progranenagister on the FPGA,
accessible via an IEEE1394 command to the board.

To set up arbitrary time shifts between cameras, we progiffereht values into the
line counter reset registers, send a command which insttiietboards to reset their coun-
ters on the next rising trigger signal, and then tell the fmmdrd to assert the trigger. All
of the setup for all boards is done using IEEE1394 reads artdsybut the order to reset
their timers, which must be executed at the same time by alecas, is sent just to the root
board. The root board then asserts the trigger signal foenliee array. The inaccuracy of
the camera synchronization is limited to the electricahggiropagating the trigger to all
of the boards. For the 100-camera array, this is less thans] 80 roughly the time to scan
out four pixels from the image sensor.

3.3.4 Developer Interface to the Boards via IEEE1394

A exible mounting system and low-level camera control matkeasy to experiment with
different applications, but we also need a developmenteniient that facilitates adding
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new features to the cameras. | took advantage of the IEEEfi@940 make prototyping
quick and easy. After power-up or a board reset, the Cold recetes simple boot code
which con gures the microprocessor memory and the IEEEl88tface. The host PC
then downloads FPGA bit les and a more sophisticated Colexecutable from the PC
via IEEE1394. Adding new camera features is just a matteoofgiling these new les

and does not require modi cations to the physical hardwaee programming GALSs or

boot ROMs). This is critical for an array of 100 cameras.

A simple bootloader and downloadable executables anddsitthakes iterating design
changes easy. Other goals for the design environment wémgtement as much as pos-
sible on the host PC using a familiar C development envirartmeeep the downloaded
executable simple, and expose as much of the camera staiesalslp to the user. Once the
nal executable has been downloaded, the important stagach camera is mapped into its
IEEE1394 address space. Using standard IEEE1394 readsraesd, wne can access the
full 32MB of DRAM attached to the processor, all of the contregisters in the MPEG2
encoder and IEEE1394 chipset, con guration registers anogned into the FPGA, and
control registers for the cameras themselves. This keepddteloper API for the array
simple—just IEEE1394 reads and writes—and makes it easgd& the state of the board
(what has been programmed into registers in the FPGA, imagsos, MPEG encoder)
from the host PC application.

3.3.5 Image Processing on the FPGA

Raw image data from the cameras almost always need to be peacksfore they can be
used. With this in mind, | designed the cameras for reasenatst with as powerful an
FPGA and as much associated memory as | could. As one exairjple potential of the

FPGA, we have implemented Bayer demosaicing of the raw selagamusing the Adaptive
Color Plane Interpolation algorithm of [39]. This method deeaccess to ve adjacent
lines of raw image data, meaning the FPGA must buffer folediof the image. Rather
than use the external memory, we use built-in BlockRAMs on theertan-1l. These RAMs

can be used for FIFOs with up to 511 entries, so for this exensie processed only 510-
pixel-wide images. We have also implemented arbitrary ggdmwarps for color images
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using lookup tables with eighth-pixel accurate coordisated bilinear interpolation. We
currently use this for keystone corrections so we can vieg/diynthetic aperture video.

3.3.6 Limits due to IEEE1394 Arbitration

The maximum isochronous (streaming) data transfer ratéEi6E1394 is 320Mb/s. The
standard method for streaming data from many different IEXE2 devices is to assign
each one a different isochronous channel number and a xetlopoof the bandwidth
in each 1394 cycle, but this turns out to be a poor strategye @avice streaming data
can achieve the maximum rate, but with many nodes, arlatratverhead will reduce the
maximum bandwidth. Devices must arbitrate before evergtismnous packet is sent, and
arbitration takes longer with more nodes because signats pnapagate from all nodes up
to the root and then back. Moreover, each IEEE1394 packethals an overhead of three
guadlets (four bytes each) to describe the packet (dat#hgisgchronous channel number,
data correction, and so on).

For an MPEG data rate of 4Mb/s (the default for our encodees)h camera must trans-
fer 66 bytes every 125us isochronous cycle. IEEE1394 pa&ekgths must be multiples of
four, meaning each camera must be con gured to stream 68ymtkets. Adding twelve
bytes for packet overhead produces an 80-byte packet. At BIhs80-byte packets would
tin the maximum of 4096 bytes per cycle. After arbitratiomeshead, we have found that
we can stream only 26, 4Mb/s cameras reliably. We have vénvégh an IEEE1394 bus
snooper that arbitration overhead is indeed the culpritgaréng more packets on the bus.

Streaming such small packets each cycle from every camedapes a data le on the
host PC that is very fragmented and thus hard to processrdnsgnust scan through the
data 80 bytes at a time to look for data from a speci c cameoaxThis dif culty and the
overhead issues, we attempted to implement an isochroremsfér scheme in which each
camera sends a full 4096-byte isochronous packet every Msyd&ach camera counts
isochronous cycles using the cycle done interrupt from EteH1394 chipset. Access to
the bus passes round-robin through the array, and eacha&#&mesponsible for attempting
to send data only on its dedicated cycle.
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We cannot implement this scheme with 4KB packets becauseawedone-cycle un-
certainty in our control over the IEEE1394 bus. Instead, atedlse cameras to transmit a
2KB packet on their designated cycle. If a camera is late go@nd transmits at the
same time as its successor, the data will still t in the cyatel no errors will occur. This
optimization makes real-time applications much easierragrhenting the data less and
slightly increases the number of cameras we can streamtain@alusly on the bus. We are
still investigating what is necessary for cycle-accuratetol of the isochronous interface.

3.3.7 HostPCs

Given the limit of roughly thirty cameras per IEEE1394 bu3) tameras require multiple
IEEE1394 buses. At this point, we run into another limit om data transfer bandwidth—
the 33MHz PCI bus in our computers. The IEEE1394 adaptor is alB¥ite, and transfer-
ring data from it to our hard drives requires two PCI transfeng from the adaptor to main
memory, and a second to the hard drives. The transfers arébd#-assisted, but here the
role of the DMA is just to free the processor, not to reduce R@GIlmandwidth. The max-
imum theoretical bandwidth for 33MHz PCI is 133MB/sec, but thaximum sustained
data transfer rate is much less. An aggressive estimateMB8)means we are limited to
one IEEE1394 bus per computer. Thus, we need one computevdoy thirty cameras.

The currentl implementation of the array with one hundradeas uses four host PCs
which each manage a separate IEEE1394 bus. We run a copyat#lyesoftware on each
PC using a client/server setup where the server is the PCGecteuhto the root board of the
array. The server issues all commands for downloading ¢ablas and code, setting up
timing, programming registers on the image sensors, reacpMPEG2 compressed video,
uploading stored snapshots of raw images, and so on. Theconmynand that cannot
always be run from the server is viewing live uncompressel@wifrom the cameras—
rather than trying to send live video across the network fR@to PC, raw video is always
viewed on the host PC for a given camera's IEEE1394 bus. Wa 088V switch to access
all of the machines from one keyboard and monitor.

The host PCs have been optimized for our applications but@sesomewhat out-of-
date. They use IEEE1394 PCI cards and striped IDE hard diovesite incoming video
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to disk as fast as it arrives. The PCs run RedHat Linux usingxtperenental IEEE1394
drivers, with one modi cation. The IEEE1394 speci catiolavs up to 64 isochronous
channels on a bus, but the Linux drivers currently suppoly éour. Each camera in
our system needs its own isochronous channel, so | modi edditivers to support the
full 64 channels. Without this capability, our cameras vdol&ive to stream on the same
isochronous channel and insert the camera number into @ higeglery streaming packet.
More importantly, we would have to schedule the camera datester explicitly instead of
relying on the IEEE1394 chipsets.

3.3.8 Design Environment

The choice of operating systems and design environmentbea@matter of taste and is
not critical to the performance of our architecture. | wolik# to brie y mention some
choices that turned out to be both inexpensive and powexnfual,to acknowledge some of
the open source software tools that made our work easier.d@cision that worked out
well was using Jean Labrosse®C/OS-Il real-time operating system for our embedded
microprocessors. The operating system is light-weighteasily ported. It costs a mere
$60 and comes with a book that describes every line of the.code

Linux was helpful because the open source community deedigome useful re-
sources early. We used a cross-compiler for Linux and Colgrmecessors provided by
David Fiddes (http://sca.uwaterloo.ca/www.calm.hwikdavidf/cold re/gcc.htm). At the
time when we were doing most of the embedded processor caalg,s8pported remote-
debugging for the Cold re using the Background Debug Mode ,patiile inexpensive
Windows tools for the Cold re did not. More information on tka®ld re MCF5206E and
its Background Debug Mode can be found at [40]. Debugging ourezlded IEEE1394
drivers and the application running on the host PCs was musiereim Linux because
we could step through source code for working applicationsee how our devices were
expected to behave and how other applications accessedghe b

Open source code was critical for getting isochronous stigg working with more
than four cameras. At the time, Windows did not yet have |IEEH1drivers (this was
before Windows 2000), and some commercial IEEE1394 drigersiot even implement
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Figure 3.7: The Stanford Multiple Camera Array

isochronous transfers, let alone streaming from many no#festunately, access to the
source code for the IEEE1394 drivers allowed me to implentfeatdriver modi cations
described earlier that allowed DMA transfers from PCl IEEg4adaptors to main mem-
ory from multiple isochronous channels. For many aspectisfroject, we were able to
leverage the work of others to get our machinery running snon

3.4 Final Speci cations

Figure 3.7 shows the Stanford Multiple Camera Array set upviidely spaced con gura-

tion. This photograph shows 125 cameras, but we have onlgd@@ras up and running.
Aside from that detail, the system as shown is accurate. a@heeras run off four PCs,
one for each of the blue cabinets holding the camera prowgésiards. The video and
images for the applications and analysis in the rest of tiesis were all acquired by this
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hardware or a subset of it in varying con gurations. We captaee up to two minutes of
video from all of the cameras. This rather arti cial limitagie to the 2GB le size limit of
our operating system, but we have not yet tried to capturgdoevents. The total cost of
the array is roughly $600 per board.

3.5 Future Work

As the rest of this thesis will show, we have used the arrayanyndifferent con gurations
for several different purposes. These experiences havii el areas of the array that
could use improvement. | will brie y discuss them here befonoving on to the applica-
tions.

Mounting and aiming cameras is by far the most time-consgnask for recon guring
the array. The mounting system is exible, but very labaeimsive. A simple mechanical
mount that snapped in place would be nice, as would one tlmted electronic control
over the camera pan and tilt. One simple but useful additionlevbe an LED on the front
of each camera. For any new camera con guration, we needetatifg which is which
before we can start aiming them. Right now, we identify casénatrial and error, but
we have fabricated a new set of camera tiles with an LED thaintesd illuminate from
the host to make manually or even automatically mappingangeca layout much simpler.
Once we have identi ed cameras, we can track them using enifQs on the processing
boards that can be queried from the host PCs. The detachatderddes do not have
IDs. If they did, we could also just label the tiles with thirand manually determine the
camera layout. Unique camera IDs might prove useful latekéeping records of sensor
radiometric properties.

The sensors in the camera array have an electronic rollintjeshanalogous to a me-
chanical slit shutter. In chapter 5, | discuss the electroailing shutter, the distortions
it introduces for fast-moving objects, and how to partialyercome them. Interactions
between the shutter and geometric calibration make it isiptesto completely overcome
the artifacts. Furthermore, synchronizing the camerah different illuminators is not
possible. If | were to design the array again, | would use @ensith snapshot shutters.

The array has one hundred synchronized video cameras, batsiiogle microphone.



42 CHAPTER 3. THE STANFORD MULTIPLE CAMERA ARRAY

Synchronizing one or more microphones with the array wouldbée more interesting
multimedia content.

Finally, this camera array design is now several years oldsel four PCs to capture
the video data, but it might be possible now to use one molktgssor PC with dual PCI-X
buses to single-handedly capture all of the array data. Giyrany real-time application |
would like to implement must account for only one quartethef array data being available
on any one machine. Running the entire array of one host wouttlat and also eliminate
all of the network synchronization in our host PC softwareaster processor buses like
PCI-X are only one way that technologies are improving. If reveo redesign the array
today, | could build it with more ef cient video compressitechnologies like MPEG-4
and new alternatives for high-speed buses, notably 800 MEE1394b and USB 2.0. As
data transfer rates increase, new arrays could exploitangonents in inexpensive image
sensors to capture video with greater resolution and hidgyreamic range.



Chapter 4

Application #1: Synthetic Aperture
Photography

Synthetic aperture photography (SAP) is a natural use fargelcamera array because it
depends on a large number of input images. As we will see, SAR0D a good starting ap-
plication because although it requires accurate geonwnera calibration, it is relatively
forgiving of radiometric variations between cameras. Tdst of this chapter describes the
synthetic aperture method in detail and explains how we gdaocally calibrate our cam-
eras. | show results using the array to create syntheti¢iapgrshotographs and videos of
dynamic scenes, including a demonstration of live SAP vmgb interactive focal plane
adjustment that takes advantage of the processing power icemeras.

4.1 Description of the Method

The aperture of a camera determines its depth of eld and haalnlight it collects. Depth
of eld refers to the distance from the focal plane at whicheals become unacceptably
out of focus in the image. This could be the point at which tlue is greater than one pixel,
for example. The larger the aperture, the narrower the defp#ld, and vice versa. This
can be exploited to look through partially occluding obgddte foliage. If a camera with a
very large aperture is focused beyond the occluder, obgd¢tee focal depth with be sharp
and in focus, while the objects off the focal plane will berbéd away. Although only a
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portion of the light from the object of interest penetrates foreground partial occluder,
their contributions all add coherently when focused by #reslon the image plane. The
result is an image of the object with reduced contrast.

Rather than actually building a camera with a one meter widetage, synthetic aper-
ture photography samples the light entering the effecipegtare using an array of cameras.
Levoy and Hanrahan pointed out that using a camera with angiperture size, it is pos-
sible to simulate images taken with a larger aperture byageg together many adjacent
views, creating what they call a “synthetic aperture” [Slaksen, et al. created a synthetic
aperture system using less dense camera spacings [6]. Beibaysused a single trans-
lating camera to capture images for their experiments, tnee limited to static scenes.
They showed with synthetic data that they could see throlggcts in front of their focal
surface. We are the rstto use a camera array to create symdperture photographs and
videos.

Figure 4.1 shows how a basic lens works. Light from a focah@lan the world is
focused by the lens onto an image plane in the camera. If aacbppresented by the
dashed line, is placed in front of the focal plane, the lighiking a given point on the
image plane comes from a neighborhood on the object and mosiogle point, causing
blur. As the object moves farther from the focal plane, the iicreases.

Figure 4.2 shows how a smaller aperture cuts out rays fronpéhiphery of the lens.
Eliminating these rays decreases the area on the objectndveh we collect light for a
given point in our image, meaning the object will look lessrb} in the image. The depth
of eld has increased—the object can be farther away fromftival plane for the same
amount of blur. Conversely, a very large aperture will resut very small depth of eld,
with object rapidly becoming out of focus as their distarmoef the focal plane increases.

As depicted in gure 4.3, synthetic aperture photographyitdlly simulates a wide
aperture lens by adding together the appropriate rays froftipie cameras. The camera
array and processing digitally recreate the function oléing by integrating the light from
rays diverging from a point on the focal plane and passinguidjin the synthetic aperture.
To do this, we need some form of geometric calibration to rieitee which pixels in our
images correspond to rays from a given point on the focaleplan
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Focal Plane Image Plan

Figure 4.1: A basic lens system. Rays leaving a point on thel folane are focused by
the lens onto a point on the image plane. For an object (repted by the dashed line) off
the focal plane, rays emanating from some patch of the svf@tbe focused to the same
point in the image, causing blur.

Focal Plane Image Plan

Figure 4.2: A smaller aperture increases depth of eld. Foohject off the focal plane,
the smaller aperture means light from a smaller area of tiectdb surface will reach the
image plane, reducing blur.
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Focal Plane Image

Figure 4.3: A synthetic aperture camera uses many camersasriple the light crossing
the synthetic aperture. It then digitally simulates a lepsribegrating measurements for
light arriving at the cameras from the same point on the dddwcal plane.

4.2 Geometric Calibration

The degree of calibration required for synthetic aperturetpgraphy depends on the de-
sired focal surfaces. As Isaksen et al. [6] note, synthgictare photography is not limited

to a single focal plane—one could create an image with d@ifferegions focused at differ-

ent depths, or use curved or otherwise non-planar focasest Arbitrary surfaces require
full geometric camera calibration—a mapping from pixeldons in each image to rays
in the world. If we restrict ourselves to sets of paralleldbplanes (similar to a regular

camera), then much simpler calibration methods suf ce Hgre, | review camera mod-

els and geometric camera calibration, then explain thelsimmmographies and plane +
parallax calibration we use for synthetic aperture phapgy and the other multi-camera
applications in this thesis.

4.2.1 Full Geometric Camera Calibration

Full geometric camera calibration determines how the tdigeensional X;Y;Z) “world
coordinates” of a point in our scene map to the two-dimerai@xiy) pixel coordinates
of its location in an image. In practice, this is done usingahmamatical pinhole camera
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Figure 4.4: The pinhole camera model. The image of a worldtpsiat the intersection of
the image plane with the line joining the point and the cancerder.

model [41], shown in gure 4.4. The image of a world point istla¢ intersection of the
image plane with the line joining the camera center and thednmoint. This operation
is called a “projection,” and the camera center is also knawthe “center of projection.”
The line passing through the camera center and perpendtoulae image plane is called
the “principal axis.” The intersection of the principal sxand the image planp, is called
the “principal point.”

The pinhole camera model is divided into the intrinsic anttiegic parameters. The
intrinsic parameters relate the location of points in theeea's coordinate system to image
coordinates. In the camera's coordinate system, the caceetar is the origin, the-axis
is the principal axis, and theandy axes correspond to the image planendy axes, as
shown (the image planeandy axes are assumed to be orthogonal). In these coordinates,
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Figure 4.5: Pinhole camera central projection. In camemadinates, the mapping from
any point to its projection on the image plan€xsY;2Z) ! (fX=Z;fY=2)

the mapping from any point to its projection on the image plssimply
(X:Y;2)! (fX=Z;fY=2)

Here, f is the focal length, the distance from the camera centeretantiage plane. Figure
4.5 shows this in one dimension.

The projection just described gives t{;Y) coordinates of the projection of a point
onto the pinhole camera image plane. To relate this to imagedmates, we rst need to
divide these coordinates by the pixel size. Equivalently,can express the focal length
f in units of the pixel size. To account for the shift betweea (i 0) image coordinate
(which is usually at the bottom left corner of the image) amelimage of the principal axis
(which is roughly in the center), we add a principal pointseff( py; py). This gives the
mapping

(X;Y;Z2) U (EX=Z+ py; fY=Z+ py)

The extrinsic properties of a camera, or its “pose”, degcitblocation and orientation
in world coordinates. Mathematically, it is a transforrmatibetween world and camera
coordinates. If the camera centerds and the rotation matriR is a 3x3 rotation matrix
that represents the camera coordinate frame orientati@m, @ world coordinat&,oriq
maps to camera coordinatég;m according to

Xcam= R(Xworia  C)
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Lettingt = RC, this can be expressed more simply as:

Xcam= RXworig + t

The extrinsic parameters for the pinhole camera model haveegrees of freedom—
three for the translation and three for the rotation matriX. Although the matrix has nine
entries, there are only three degrees of freedom, correémpio roll, pitch and yaw. The
intrinsic properties of the camera have three degrees etitnm: the focal lengtt, and
the location of the principal poir(ixp;yp). More general camera models that account for
non-square pixels will use two focal lengttfg and fy, to express the focal lengths in terms
of the pixel width and height. Finally, the most general mesdhll also include a “skew”
parametes that accounts for non-orthogonal image axes. This will ragigen for normal
cameras, so this parameter is usually zero. Negledivge now have a ten degree of
freedom model that relates world coordinates to image ¢oatels by transforming world
to camera coordinates, then projecting from camera to immagedinates.

Con guring cameras to exactly match a speci c camera modelearly impossible,
S0 in practice one always sets up the cameras and then taditireem to determine the
model parameters. Much work has been done on how to calibeateeras from their
images. Early approaches used images of a three-dimehsalitaation target [42, 43].
The calibration targets have easily detectable featukeste corners of a black and white
checkerboard pattern, at known world coordinates. Zhawgldped a method that requires
multiple images of a planar calibration target [44]. Plateagets are more convenient
because they can be easily created using a laser printeof &lese methods attempt to
minimize the error between imaged feature coordinates aodimates predicted from the
model.

To perform full calibration for our array, we use a methodaleped by Vaibhav Vaish
that extends Zhang's method to multiple cameras [45]. Asharg)'s method, the input
to the calibration is multiple images of a planar target vitiown two-dimensional coor-
dinates in the plane. Vaish has developed a very robustréedeiector that automatically
nds and labels the corners of squares on our target. Typésallts for the feature detector
are shown superimposed on an image of the target in gure®hé.target is designed to
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Figure 4.6: Our robust feature detector automatically atetand labels feature points on
our calibration target.

have uniquely identi able features even if the entire tangenot visible, a common oc-
currence for our large array. Using the target-to-imagesspondences, we get an initial
estimate of the camera model parameters by independetitlyateng each camera using
Zhang's method. This estimate is used to initialize a naadmoptimization (bundle ad-
justment) that solves for all parameters simultaneously typically get an RMS pixel
projection error of 0.3 pixels with this method.
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4.2.2 Planar Homographies

Full geometric calibration for an array of one hundred camearan be quite challenging.
For many uses of the array, being able to reproject images fn@ image plane to some
other plane in the world is suf cient. Synthetic apertureofggraphy, for example, only
requires a mapping from the focal plane to the camera imag®eepl Similarly, the two-
plane parametrization used in light eld rendering alignsages from all views onto a
common object plane [5]. Some approaches to multi-viewestatso use a space-sweep
framework, once again aligning camera images to planesiwtrld [46, 47].

The mapping between planes is de ned by a projection thrainghcamera center.
Corresponding points on the two planes lie on a line passirutiih the camera center.
This relationship, called a 2D projective transformatiompl@anar homography, can be de-
scribed using homogeneous coordinates as a 3x3 matrix vgttt degrees of freedom
[41]. Furthermore, it can be computed independently foheaenera directly from image
measurements, with no knowledge of the camera geometmyrd-#§7 shows a typical use
of a planar homography to align images to a reference viethisrexample, we determine
the mapping directly by placing our planar calibration &rgn the plane to which we will
align all images. To create a synthetic aperture image &atos the plane of the target,
we simply add the aligned the images from all cameras.

4.2.3 Plane + Parallax Calibration

For many applications, aligning images to a single planessficient. For example, we
would like to focus at different depths for synthetic apegtphotography, or select different
object planes for light eld rendering, without computingnaw set of homographies. This
can be done using “plane + parallax” calibration. Althoulgé projections could be com-
puted using full geometric calibration, for planar camemays and fronto-parallel focal
planes, plane + parallax calibration is simpler and moreisof¥].

To calibrate using plane + parallax, we rst align imagestrall of our cameras to a
reference plane that is roughly parallel to the camera plake do this as before, using
images of a planar calibration target set approximatelgtérgparallel to the camera array.
We designate a central camera to be the reference view amulten alignment for it that
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(@) (b)

Figure 4.7: Alignment using planar homographies. Usinggesaof a planar calibration
target, we compute a planar homography that aligns eacheittag reference plane. (a)
shows an image of the target from a corner camera of the gsaghow the same image
warped to the reference view. The planar target appeartofarallel in all of the aligned

images.

makes the target appear fronto-parallel while perturbinegitnaged target feature locations
as little as possible. We then compute planar homographestign the rest of the views
to the aligned reference view [41]. At this point, all our iges are aligned to a reference
view as in gure 4.7.

In the aligned images, there is a simple relation betweeni'palistance from the
reference plane and its parallax between two views. FigildesHows a scene poiRtand
its locationspg = (Soito) T; p1 = (s1:t1) T in the aligned images from two camei@sand
C,. LetDzp be the signed distance from P to the reference plane (nedatithis example),
Zo be the distance from the camera plane to the reference @ad®x be the vector from
Co to C; in the camera plane. De ne thelative depthof P to bed = %. Given this
arrangement, the parall®p= p; pois simplyDp= Dxd.

This has two important consequences:

The parallax between aligned images of a single point offrdference plane is
enough to determine the relative locations in the camernaepbd all of the cameras.
This is the heart of the plane + parallax calibration methigghically, one measures
the parallax of many points to make the process more robust.

Once we know the relative camera locations, determiningdlaive depth of a point
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Figure 4.8: Planar parallax for planar camera arrays. Atg@dimot on the reference plane
has distinct imagepo; p1 in camera€£y;C;. The parallax between these two is the product
of the relative camera displacemdntand the relative deptbzp,.

in one view is enough to determine its location in all othews. We will use this
later for spatiotemporal view interpolation.

Plane + parallax calibration plays a major role in most ofdpelications in this the-
sis. We use it in synthetic aperture photography to eastydat different depths. Once
we have aligned images to a plane at one depth, we can credteesy aperture images
focused at other depths by translating the images by sonmtgpiewdf the camera displace-
ments. For high speed videography, we align images fromf @llocameras to one focal
plane, and plane + parallax describes the misalignmentsewe will see for objects not
on that plane. Finally, the spatiotemporal view intergolaimethod uses plane + parallax
calibration to estimate scene motion between images freerakdifferent cameras.

4.3 Results

The synthetic aperture images and videos | present in tlapteh were enabled by our
capture hardware and geometric calibration methods. Becaasaverage images from
all cameras to create each synthetic aperture image, strg@amapture from all cameras
was essential for the videos. For any dynamic scene, theraarhad to be synchronized
to trigger simultaneously. Many of these images and videerevproduced using full
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Figure 4.9: Synthetic aperture sample input images. Beddese images are averaged
together, the obvious color variations will have littleezft on the output images.

geometric calibration, before we knew that plane + parallaxld be simpler and more
effective. Regardless, they show that we can effectivelylioenthe data from all of our
cameras.

For synthetic aperture experiments, we use a setup simithettightly packed arrange-
ment in gure 3.4. The cameras are mounted on 80/20 bars witsffective aperture that
is one meter wide and slightly less than one meter tall. Usisgtup similar to the one
shown but with only 82 cameras, we took a snapshot of a scetheanpartially occlud-
ing plant in the foreground. Three example input images hosva in gure 4.9. Figure
4.10 shows a sequence of synthetic aperture images creatadHis dataset. The focal
plane starts in the conference room behind the plant andmsae/ard the camera. Note
the different portions of the image in focus at differentdbdepths, and how the face of
the person hiding behind the plant is revealed even though mgut camera could see
only tiny portions of his face. We also have the option of erdiiag our results with stan-
dard image processing techniques. In gure 4.11, we havppd out the face from the
fourth image in the synthetic aperture image sequence amaherd the contrast. Despite
having a plant between all of our cameras and the personabesi$ now clearly visible
and recognizable (assuming you know Professor Levoy!)s Ehust the beginning of the
possibilities of digitally improving our results. Isaksenal., for example, mentioned the
possibility of implementing passive depth-from-focus aleghth-from-defocus algorithms
to automatically determine the depth for each pixel.

Of course, we are not limited to synthetic aperture photagya We have also used
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Figure 4.10: Sweeping the synthetic aperture focal planethis sequence of synthetic
aperture images, the focal plane is swept toward the camiexga @bjects visible at one
focal depth disappear at others, allowing us to clearly beeperson hiding behind the
plant, even though he was mostly occluded in the input images
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Figure 4.11: A synthetic aperture image with enhanced ashtr

Figure 4.12: Synthetic aperture video sample input images.

the array to create the world's rst synthetic aperture wsl®f dynamic scenes. Using the
same setup as before, we streamed synchronized, 4Mb/s MIRIEG from all cameras to
disk. The scene is three people walking behind a dense waithes. Three sample images
from different cameras at the same time (with a person betiiad/ines) are shown in
gure 4.12. These images actually make the situation seersewhan it really is. Viewing
any one input video, one can tell that people are moving lietiia vines, although it is
not possible to tell who they are or what they are doing. | hagkided an example input
video, sapvideoinput.mpg, on the CD-ROM accompanying tiesis.

The resulting synthetic aperture video is also on the CD-R@bEkled sapvideo.mpg.
In it, we see the three people moving behind the wall of vimesssome of the objects they
are carrying. Example frames are shown in gure 4.13.



4.3. RESULTS 57

Figure 4.13: Frames from a synthetic aperture video.

The results presented so far have been generated off-libérosurveillance applica-
tions, we would like to view live synthetic aperture videoilghnteractively sweeping the
focal plane. Using plane + parallax calibration, we can gnbe focal plane back and forth
by translating the keystoned images before we add themhtegethis is the rst real-time
application we have implemented with the array, and thedeshonstration of the value of
using the FPGAs for low-level image processing. InsteadheRCs warping and shifting
all the images, the cameras perform these operations itiggdvafore compressing and
transmitting the video. The FPGA applies the initial honagay using a precomputed
lookup table stored in its SDRAM, then shifts the warped imbgiore sending it to the
MPEG compression chip. The PCs decode the video from eachraaadd the frames
together, and send them over a network to a master PC. Therreasis the images from
the other PCs and displays the synthetic aperture video.

The video livesap.avi on the companion CD-ROM demonstréiiessi/stem in action.
It shows video from one of the cameras, a slider for intevattichanges the focal depth,
and the synthesized SAP images. Figure 4.14 has exampleimages and SAP images
from the video. The input frames show the subject we aregrtarirack as people move in
front of him. In the synthetic aperture images, we are abbaljast the focal depth to keep
the subject in focus as he moves toward the cameras. Thedanglioreground people are
blurred away.

At the time when this was Imed, we had only implemented mdmome image warps

on the FPGAs. We can now warp color images, too. The performanttleneck in the
system is video decoding and summation on the PC's. Althobghcameras can warp
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@)
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Figure 4.14: Live synthetic aperture video. (a) Frames fame of the input cameras,
showing the subject to be tracked as people move in frontrof Iib) The corresponding
synthetic aperture images. We interactively adjust thalfptane to keep the subject in
focus as he moves forward.

images at the full 640 x 480 resolution, we con gure the MPE£BZoders to send 320 x
240 I-frame only video to the PCs. At that resolution, the P@sozgture, decode and add
15 monochrome streams each at 30fps. Because the I-framesmag DCT-encoded, we
hope to add one more optimization: adding all of frames togreih the DCT domain, then

applying one IDCT transform to get the nal SAP image.

The enhanced contrast example from before hints at thelplitsss of digitally im-
proving synthetic aperture photographs. Synthetic apextigleo allows even more possi-
bilities for enhancing our data because we can exploit timadhyc nature of the scene. For
example, suppose we have for each input image a matte igiegtibixels that see through
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(@) (b)

Figure 4.15: Synthetic aperture with occluder mattes. (apgular synthetic aperture
image, averaged from all aligned input images. (b) Eachl jpixénis image is the average
of only the corresponding input image pixels that see thinabhg occluder. The contrast is
greatly increased because the occluder is eliminatedadsieblurred.

the foreground occluder. If instead of averaging pixelsfial images to generate the syn-
thetic aperture image, we average only those that see thkgtoamd, we can eliminate the
occluder instead of blurring it away. For a static occlutiegre are many ways to generate
these mattes. For example, we could place a black surfadgedotte object, then a white
one, and record which pixels change.

Figure 4.15 shows an experiment using another approachkhmgaall of the pixels
which never change during the recorded video. These pixetespond to the static parts
of the video, either the background or the occluder. In racive use a threshold so we
do not confuse image noise with unoccluded pixels. The in@géhe left is the usual
synthetic aperture image. On the right, each pixel is theageeof only the unoccluded
pixels in the input images, and the image contrast is muchidagal. The missing pixels
are ones in which no camera saw through the foreground,ngptiianged during the video
segment, or the changes were below our threshold.

Pixels that contain a mixture of foreground and backgrowidrs will corrupt the mat-
ted results, and we can expect that our Bayer demosaicingvauik poorly for background
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colors unless the holes in the occluder are several pixale.wColor calibration also be-
comes an issue here. Regular synthetic aperture photographlatively insensitive to
the varying color responses of our sensors. The camerastadekle the images in g-
ure 4.9 were con gured identically, but show signi cant iation. Because the data from
all the cameras are averaged together, the differencevaraged away. For the matting
experiment, if few values are averaged for a pixel, colorataomms will have a greater ef-
fect. In the next section, we will look at an application wi¥en stricter color calibration
requirements: high-speed video capture using a dense aaray.



Chapter 5

Application #2: High-Speed
Videography

This chapter explains how we use our camera array as a haegdspdeo camera by stag-
gering the shutter times of the cameras and interleaving éfigned and color-corrected
images. Creating a single high-speed camera from the amayres a combination of ne
control over the cameras and compensation for varying geaand radiometric prop-
erties characteristic of cheap image sensors. Interlgawiages from different cameras
means that uncorrected variations in their radiometriperties will cause frame-to-frame
intensity and color differences in the high-speed video.aBse the radiometric responses
of cheap cameras varies greatly, the cameras in our arralybauwson gured to have rel-
atively similar responses, then calibrated so the remgidifierences can be corrected in
post-processing.

High-speed videography stresses the temporal accuracyeof anaged pixel, so we
must correct for distortions of fast-moving objects duehte &lectronic rolling shutter in
our CMOS image sensors. Rolling shutter images can be tho@igistaiagonal planes in
a spatiotemporal volume, and slicing the volume of rollihgitser images along vertical
planes of constant time eliminates the distortions. At the @& the chaptor, | will explore
ways to extend performance by taking advantage of the urieptares of multiple camera
sensors—parallel compression for very long recordingd,exposure windows that span
multiple high-speed frame times for increasing the frante oa signal-to-noise ratio. The

61
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interaction of our geometric alignment with the electrorotling shutter causes timing
errors that can only be partially corrected.

5.1 Previous Work

High-speed imaging has many applications, including asislgf automotive crash tests,
golf swings, and explosions. Industrial, research andanyliapplications have motivated
the design of faster and faster high-speed cameras. Cuwrefitthe-shelf cameras from
companies like Photron and Vision Research can be found ¢catd 800x600 pixels at
4800fps, or 2.3 gigasamples per second. These devices usgleagmera and are typi-
cally limited to storing just a few seconds of data becaushehuge bandwidths involved
in high-speed video. The short recording duration meansattguisition must be synchro-
nized with the event of interest. As we will show, our systets lus stream high-speed
video for minutes, eliminating the need for triggers andrshecording times by using a
parallel architecture for capturing, compressing, andrsgdigh-speed video, i.e. multiple
interleaved cameras.

Little work has been done generating high-speed video frastipte cameras running
at video frame rates. The prior work closest to ours is th&hafchtman, et al. on increasing
the spatiotemporal resolution of video from multiple caa%ef48]. They acquire video at
regular frame rates with motion blur and aliasing, thenisgsize a high-speed video using
a regularized deconvolution. Our method, with better tgnaontrol and more cameras,
eliminates the need for this sophisticated processingpatih we will show that we can
leverage this work to extend the range of the system.

5.2 High-Speed Videography From Interleaved Exposures

Using n cameras running at a given frame rateve create high-speed video with an ef-
fective frame rate oh = n s by staggering the start of each camera's exposure window
by 1=h and interleaving the captured frames in chronological oféer example, using 52
cameras, we haw=30,n=52, andh=1560fps. Unlike a single camera, we have great ex-
ibility in choosing exposure times. We typically set the espre time of each camera to be
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Figure 5.1: An array of 52 cameras for capturing high-spegelos The cameras are packed
closely together to approximate a single center of praecti

1=h, 650ns in this case, or less. The exposure duration for our Omaivisensors is pro-
grammable in increments of 268, corresponding to four row times. Very short exposure
times are often light-limited, creating a trade-off betweequiring more light (to improve
the signal-to-noise ratio) using longer exposures, andaied motion blur with shorter
exposures. Because we use multiple cameras, we have the opeatending our expo-
sure times past=h to gather more light and using temporal super-resolutiohrigues to
compute high-speed video. We will return to these ideas.late

Figure 5.1 shows the assembly of 52 cameras used for theseiregnts. To align
images from the different cameras to a single reference, vieamake the simplifying as-
sumption that the scene lies within a shallow depth of a siogject plane. Under these
conditions, we can register images using planar homogeaps described in section 4.2.
We place the calibration target at the assumed object pladepik one of the central
cameras in the array to be the reference view. Using autoatigtdetected feature corre-
spondences between images, we compute alignment homaggdphall other views to
the reference view.

Of course, this shallow scene assumption holds only forexémat are relatively at
or suf ciently distant from the array relative to the camegacing. Figure 5.2 shows the
alignment error as objects stray from the object plane.iBahalysis, (although not in our
calibration procedure), we assume that our cameras anetboa a plane, their optical axes
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Object Plane

Alignment Error

Image Plane

Reference camera 2nd camera

Figure 5.2: Using a projective transform to align our imagasses errors for objects off
the assumed plane. The solid lines from the gray ball to easteca show where it appears
in each view with no errors. The dashed line shows how thedent incorrectly projects
the image of the ball in the second camera to an assumed qiigeet, making the ball
appear to jitter spatially when frames from the two camerademporally interleaved.

are perpendicular to that plane, their image plane axesaaedigl, and their focal lengths
f are the same. For two cameras separated by a distaaoebject at a distansawill see
a disparity ofd = fa=sbetween the two images (assuming the standard perspeativera
model). Our computed homographies will account for exaittit shift when registering
the two views. If the object were actually at distars®énstead ofs, then the resulting
disparity should bel®= fa==’ The difference between these two disparities is our error
(in metric units, not pixels) at the image plane.

Equating the maximum tolerable ermto the difference betweahandd® and solving
for Lyields the equation

S
50: sC
1 =
fa

Evaluating this for positive and negative maximum errox@giour near and far effec-
tive focal limits. This is the same equation used to caleuthte focal depth limits for a
pinhole camera with a nite aperture [49]. In this instancer aperture is the area spanned
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| Focal Length| Focal Distance Depth of Field| Hyperfocal Distance

10m 0.82m

6.0mm 20m 3.3m 242m
30m 7.5m
100m 99m
10m 0.24m

20.0mm 20m 0.99m 809m
30m 2.2m
100m 25m
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Table 5.1: The effective depth of eld for the 52-camera wrfar different lens focal
lengths and object focal distances.

by our camera locations. Rather than becoming blurry, objefftthe focal plane remain
sharp but appear to move around from frame to frame in theadigmages.

For our lab setup, the object plane is 3m from our cameras;aheera pitch is 33mm,
and the maximum separation between any two of the 52 came2slmm. The image
sensors have a 6mm focal length and a pixel size af®.2Choosing a maximum toler-
able error of +/- one pixel, we get near and far focal depthtéiraf 2.963m and 3.036m,
respectively, for a total depth of eld of 7.3cm.

Note that these numbers are a consequence of Iming in a caoh laboratory. For
many high-speed video applications, the objects of inteaes suf ciently far away to
allow much higher effective depths of eld. To give an ideahww our system would
work in such settings, table 5.1 shows how the depth of el with object focal depth.
It presents two arrangements, the lab setup with 6mm lersesdy described, and the
same rig with moderately telephoto 20mm lenses. The deptsldigrows quickly with
distance. For the system with 6mm lenses and an object fagtainde of 10m, the depth
of eld is already nearly a meter. The table also includesdfiective hyperfocal distance,
h, for the systems. When the object focal depth is sht tite effective depth of eld of the
system becomes in nite. The motion in the aligned imagedlaslgects farther tham=2
from the camera array will be less than our maximum tolerabier.

The false motion of off-plane objects can be rendered mushwsually objectionable
by ensuring that sequential cameras in time are spatigicadt in the camera mount. This
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Figure 5.3: The trigger order for our 52 camera array. Enguiat sequential cameras in
the trigger sequence are spatially adjacent in the arraesimime-to-frame false motion
of off-plane objects small, continuous and less objectitma

constrains the maximum distance between cameras from eneiwithe nal high-speed
sequence to the next to only 47mm and ensures that the appaotgion of misaligned
objects is smooth and continuous. If we allow the alignmerdrdo vary by a maximum
of one pixel from one view to the next, our effective depth efd increases to 40cm in our
lab setting. Figure 5.3 shows the ring order we use for ouc&era setup.

5.3 Radiometric Calibration

Because we interleave images from different cameras, wated variations in their ra-
diometric properties will cause frame-to-frame intensityd color differences in the high-
speed video. Because the radiometric responses of cheapasavaeies greatly, the cam-
eras in our array must be con gured to have relatively simiésponses, then calibrated so
the remaining differences can be corrected in post-praugss
Color calibration is essential to many view interpolatioml d&gh-x algorithms. Light

Field Rendering and The Lumigraph, for example, assume that the camera images
“look alike’—the color and intensity variations betweenrages are due only to the chang-
ing camera positions. Furthermore, most computationagingatechniques assume that
the camera responses are linear. Even expensive camarasafte nonlinear responses,
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so we must also nd a way to linearize the sensor responsea Erge camera array, these
calibration methods must be automatic.

Differences in the response of a camera's pixels to incidieimbination from the scene
can be due to variations in the sensor's response or to thereanoptics. Here, | summa-
rize these sources of variation, review past efforts toraatecally radiometrically calibrate
camera arrays, and present methods for automatically ewmg and color matching the
array.

5.3.1 Camera Radiometric Variations

For a given incident illumination, a camera’s image sensar @ptics determine its radio-
metric response. Process variations between sensorsgoibetween pixels on the same
sensor) lead to different responses at each step of themgpagbcess. The color lters for
single-chip color sensors, the photodetectors that daleay electrons generated by light
interacting with silicon, and the circuitry for amplifyirend reading out the values sensed
at each pixel all contribute to the variations between sensbhe CMOS sensors in our
array use “analog processing” for color space conversieghgamma adjustment, adding
more sources of variation unless these features are tufhed o

The optics on our cameras also cause variations in coloonsgp Co¢' falloff and
vignetting, for example, cause images to get dimmer towtre®dges. Less strict man-
ufacturing tolerances for inexpensive lenses also leadfterehces in the amount of light
they gather. Global differences in the amount of light a Ipasses to the sensor are in-
distinguishable from a global change in the gain of the sersowe do not attempt to
calibrate our sensor and lenses separately. Furthermitmeugh intensity falloff is cer-
tainly signi cant for our cameras, we have not yet attemptedalibrate it for our array.
Our experience so far has been that it is roughly similar foammera to camera and does
not strongly impact our algorithms.

5.3.2 Prior Work in Color Calibrating Large Camera Arrays

Very little work has been done on automatically radiomethccalibrating large camera
arrays, most likely because big arrays are still rare. Sgrstesis, such as the 3D-Room,
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do not color calibrate their cameras at all, leading to caltifacts [50]. Presumably the
automatic gain, offset and white balance controls for tkameras produced acceptable
images, even if they varied somewhat between cameras. Yaalg éund that the au-
tomatic controls were unreliable for their 64-camera afi®}, so they used the method
proposed by Nanda and Cutler for an omnidirectional muhisse “RingCam” [51].

The RingCam itself was a set of cameras with only partially leygring views, so the
color calibration relies on image statistics in the regidroeerlap between neighboring
cameras. Because this method is the only other one we know obfoguring an array
of cameras, | will brie y describe it here before presentog methods. In the notation of
Nanda and Cutler, for a camera with brightnbsand contrast, the relation between an
observed pixel valug(x;y) and the accumulated charid&;y) on the sensor at that pixel is

I(xy)= b+ c i(xy)

Their image sensors, like ours, have programmable gaingrésis) and offsets (bi-
ases). To con gure their cameras, they rst set the contfastheir sensors to zero and
adjust the offset until the mean image value is some degdrifiack value.” Once the
offset has been xed, they vary the contrast to raise the mmage value to some user-
selected level. Finally, they white balance their camegadnbing a white piece of paper
and adjusting the red and blue gains of their sensors usilrttages of the paper have
equal red, green and blue components. Their goal was realithage corrections, so they
did not implement any post-processing of the images fronn taneras.

Our color calibration goals are different from those of Nard al. The RingCam had
to deal with highly varying illumination because their caaghad only partially overlap-
ping elds of view and were arranged to cumulatively span k360 degrees. For the
applications in this thesis, our cameras are usually on repdad verged to view a com-
mon working volume, so the ranges of intensities in the viawesmore consistent. The
RingCam was designed to handle dynamically varying illunidmaaind used blending to
mitigate residual color differences between cameras. ©al ig to produce images that
require no blending. We x our camera settings at the stagaifh acquisition so we can
calibrate for a particular setting and post-process thg@sao correct for variations.
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5.3.3 Radiometric Calibration Method

Our calibration method ensures that all cameras view theesamge of scene intensities
and maximizes the usable data produced in each color chhgradl cameras so we can
process it later. It is described in detail in Neel Joshi'sskéas thesis [8]. We start by con-
guring all of our cameras to match the same desired linedortthe gray scale checkers
on a Macbeth color checker chart. Our image sensors areymghlinear near the top and
bottom of their output range, so we t the response to a limenfr20 (out of 255) for the
black patch (3.1% re ectance) to 220 for the white patch @90.re ectance). We itera-
tively adjust the programmable green, red and blue gain#adts on our sensors until
the measured responses match the line. Assuming the whdle igsahe brightest object in
our scene, this ensures that we're using the entire rangaabf @lor channel and reduces
guantization noise in our images. This linear t has the abldene t of white balancing
our cameras.

To ensure that intensity falloff and uneven illuminationrd cause errors, we take an
image with a photographic gray card in place of the checkartchVith no intensity falloff
and uniform illumination, the image of this diffuse gray@arould be constant at all pixels.
For each camera, we compute scale values for each pixeldirattthe nonuniformity and
apply them to all image measurements.

Once we have automatically con gured the cameras, we applydard methods to
further improve the color uniformity of images. The imagas® response is only roughly
linear, so we compute lookup tables to map the slightly maar responses of our cameras
to the desired line for the gray scale patches. Then we caT@x8 correction matrices
that we apply to théR; G; B) pixel values from each camera to generate corrgd®e@; B)
values. The matrices minimize the variance between medsaitaes for all of the color
checkers in the chart across all of the cameras in the array.

There are a number of ways one could automate this task. Weedbdeverage our
geometric calibration by attaching the color checker togrdmetric calibration target at
a xed location and using homographies to automatically the locations of the color
checker patches. With this method, we can robustly and gingliometrically con gure
and calibrate an array of 100 cameras in a matter of minutes.
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Figure 5.4: A color checker mosaic with no color correcti®his image was assembled us-
ing 7x7 blocks from different cameras and clearly shows #itgometric variation between
them, even though they are con gured with identical expesand color gain settings.

Figure 5.4 shows an image mosaic of a Macbeth color checket etade with no color
calibration. To make this image, we con gured all of our caasawith the same gains, took
pictures of the target and then applied the planar homogrdescribed earlier to warp all
the images to one common reference view. We assembled theeafimsn 7x7 pixel blocks
from different camera images. Each diagonal line of blockagonal from lower left to
upper right) is from the same camera. The color differencesasy to see in this image
and give an idea of the process variation between image iIgenso

In the gure 5.5 below, we have used our color calibrationtioes to properly set up
the cameras and post-process the images. Note that thedifiébwences are very hard
to detect visually. This implies that we should be able to teeptypes of mosaics and
IBR methods for combining images effectively, too. In queative terms, the RMS error
between color values for any two cameras was 1.7 for red salué for green, and 1.4 for
blue. The maximum error was larger, 11 for red, 6 for green&fat blue. Although the
perceptible differences in the resulting images are srttadlJarge maximum errors might
cause dif culties for vision algorithms that rely on accte@olor information. As we will
see in the next chapter, we have successfully use opticalbaged vision algorithms on
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Figure 5.5: A color checker mosaic with color correction tekfcalibrating our cameras,
the color differences are barely discernible.

images from the array to perform view interpolation in spawcd time.

Our radiometric calibration method has several limitagidinat might need to be ad-
dressed for future applications. The cameras must all ®saime calibration target, pre-
cluding omnidirectional camera setups like the RingCam. Weatdandle dynamically
varying illumination, which could be a problem for less aoiied settings. Although we
take steps to counter intensity falloff in the cameras anmtundorm illumination of our
color checker when performing the color calibration, we @b model intensity falloff or
try to remove it from our images. Because falloff is similasrfr camera to camera, and
our cameras all share the same viewing volume, the effeetbiand to perceive for our
applications. For image mosaicing to produce wide eldvaw mosaics, however, this
falloff might be very noticeable.

5.4 Overcoming the Electronic Rolling Shutter

For image sensors that have a global, “snapshot” shutten,asian interline transfer CCD,
the high-speed method we have described would be completea@shot shutter starts and
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(@) (b)

Figure 5.6: The electronic rolling shutter. Many low-enchige sensors use an electronic
rolling shutter, analogous to an open slit that scans owiirttage. Each row integrates
light only while the slit passes over it. (a) An example of djeat moving rapidly to the
right while the rolling shutter scans down the image plamg.Irf the resulting image, the
shape of the moving object is distorted.

stops light integration for every pixel in the sensor at thme times. Readout is sequential
by scan line, requiring a sample and hold circuit at eachl piqgreserve the value from the
time integration ends until it can be read out. The electroailing shutter in our image
sensors, on the other hand, exposes each row just beforesdsout. Rolling shutters
are attractive because they do not require the extra samglbad circuitry at each pixel,
making the circuit design simpler and increasing the lltfac(the portion of each pixel's
area dedicated to collecting light). A quick survey of Onision, Micron, Agilent, Hynix
and Kodak reveals that all of their color, VGA (640x480) Heson, 30fps CMOS sensors
use electronic rolling shutters.

The disadvantage of the rolling shutter, illustrated in rg(b.6, is that it distorts the
shape of fast moving objects, much like the focal plane shutta 35mm SLR camera.
Since scan lines are read out sequentially over the 33msftame, pixels lower in the
image start and stop integrating incoming light nearly anedater than pixels from the top
of the image.

Figure 5.7 shows how we remove the rolling shutter distartid®he camera triggers
are evenly staggered, so at any time they are imaging diffeegions of the object plane.
Instead of interleaving the aligned images, we take scaes lthat were captured at the
same time by different cameras and stack them into one image.

One way to view this stacking is in terms of a spatiotempoodlime, shown in gure
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T e e L = B

Figure 5.7: Correcting the electronic rolling shutter distm. The images on the left
represent views from ve cameras with staggered shuttersany time, different rows
(shown in gray) in each camera are imaging the object planest&yking these rows into
one image, we create a view with no distortion.

y

A

@) (b)

Figure 5.8: Slicing the spatiotemporal volume to corredlimg shutter distortion. (a)
Cameras with global shutters capture their entire imageeaséime time, so each one is
a vertical slice in the volume. (b) Cameras with rolling skrgtcapture lower rows in
their images later in time, so each frame lies on a slantedgepia the volume. Slicing
rolling shutter video along planes of constant time in thatispemporal volume removes
the distortion.

5.8. Images from cameras with global shutters are verticass(along planes of constant
time) of the spatiotemporal volume. Images from rolling tsllucameras, on the other
hand, are diagonal slices in the spatiotemporal volume.stha line stacking we just de-
scribed is equivalent to slicing the volume of rolling skeaimages along planes of constant
time. We use trilinear interpolation between frames to teréfae images. The slicing re-
sults in smooth, undistorted images. Figure 5.9 shows a aosgn of frames from sliced
and unsliced videos of a rotating fan. The videos were Imeathyhe 52 camera setup,
using the trigger ordering in gure 5.3.

The spatiotemporal analysis so far neglects the intemrattgiween the rolling shutter
and our image alignments. Vertical components in the algmnransformations raise or
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@) (b)

Figure 5.9: “Slicing” rolling shutter videos to eliminatéstbrtions. (a) An aligned image
from one view in the fan sequence. Note the distorted, nofowm appearance of the
fan blades. (b) “Slicing” the stacked, aligned frames sa¢ tbas in the nal images are

acquired at the same time eliminates rolling shutter artifa The moving blades are no
longer distorted.

lower images in the spatiotemporal volume. As gure 5.10vehosuch displacements
also shift rolling shutter images later or earlier in time. 8yering the trigger timing
of each camera to cancel this displacement, we can resterdetsired evenly staggered
timing of the images. Another way to think of this is that atieal alignment shift of
x rows implies that features in the object plane are imagedniyt x rows lower in the
camera's view, but alsg row timeslater because of the rolling shutter. A row time is the
time it takes the shutter to scan down one row of pixels. Bigg the camerarow times
earlier exactly cancels this delay and restores the intktiaeng. Note that pure horizontal
translations of rolling shutter images in the spatioterapeolume do not alter their timing,
but projections that cause scale changes, rotations otdwegg alter the timing in ways
that cannot be corrected with only a temporal shift.

We aim our cameras straight forward so their sensors plaeessgarallel as possible,
making their alignment transformations as close as passibbure translations. We com-
pute the homographies mapping each camera to the referawedetermine the vertical
components of the alignments at the center of the image, @nitast the corresponding
time displacements from the cameras' trigger times. As we mted, variations in the
focal lengths and orientations of the cameras prevent theboaphies from being strictly
translations, causing residual timing errors. In practioe the regions of interest in our
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(b)

Figure 5.10: Alignment of rolling shutter images in the spi@mporal volume. (a) Verti-
cally translating rolling shutter images displaces thewstal planes occupied by earlier or
later frames. This is effectively a temporal offset in theage. (b) Translating the image
in time by altering the camera shutter timing corrects thsedf As a result, the image is
translated along its original spatiotemporal plane.

videos (usually the center third of the images) the maximuarmoras typically under two
row times. At 1560fps, the frames are twelve row times apart.

The timing offset error by the rolling shutter is much easiesee in a video than in a se-
guence of still frames. The video faven.mpg on the CD-ROM accompanying this thesis
shows a fan Imed at 1560fps using our 52 camera setup andyest&ggered trigger times.
The fan appears to speed up and slow down, although its réadityeis constant. Note
that the effect of the timing offsets is lessened by our samg@rder—neighboring cameras
have similar alignment transformations, so we do not seieabdhanges in the temporal
offset of each image. Fashifted.mpg is the result of shifting the trigger timingstompen-
sate for the alignment translations. The fan's motion is sawoth, but the usual artifacts
of the rolling shutter are still evident in the misshapenlfitades. Farshiftedsliced.mpg
shows how slicing the video from the retimed cameras remthasemaining distortions.

5.5 Results

Filming a rotating fan is easy because no trigger is needédefan itself is nearly planar.
Now | present a more interesting acquisition: 1560 fps videballoons popping, several
seconds apart. Because our array can stream at high speed] net deed to explicitly
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Figure 5.11: 1560fps video of a popping balloon with rollisigutter distortions. The
balloon is struck at the top by the tack, but it appears to pomfthe bottom. The top of
the balloon seems to disappeatr.

synchronize video capture with the popping of the ballodnsfact, when we Imed we
let the video capture run while we walked into the center efrttom, popped two balloons
one at a time, and then walked back to turn off the recordingis Video is also more
colorful than the fan sequence, thereby exercising ourraaltibration.

Figure 5.11 shows frames of one of the balloons popping. We hligned the images
but not yet sliced them to correct rolling shutter-inducestattion. This sequence makes
the rolling shutter distortion evident. Although we strittee top of the balloon with a
tack, it appears to pop from the bottom. These images are thheraccompanying video
balloonldistorted.mpg. In the video, one can also see the arti ciatiom of our shoulders,
which are in front of the object focal plane. Because of our@@ordering and tight
packing, this motion, although incorrect, is relativelyobrectionable. Objects on the wall
in the background, however, are much further from the folzalgpand exhibit more motion.

Figure 5.12 compares unsliced and sliced images of the ddxadloon in the sequence
popping. These sliced frames are from ballo@tized.mpg. In the unsliced sequence, the
balloon appears to pop from several places at once, andspiédesimply vanish. After
resampling the image data, the balloon correctly appegsgdrom where it is punctured
by the pin. This slicing xes the rolling shutter distortisrbut reveals limitations of our
approach: alignment errors and color variations are muate mbjectionable in the sliced
video. Before slicing, the alignment error for objects ot fiocal plane was constant for a
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given depth and varied somewhat smoothly from frame to fraffter slicing, off-plane
objects, especially the background, appear distortedusectheir alignment error varies
with their vertical position in the image. This distortioatfern scrolls down the image
as the video plays and becomes more obvious. Before slidieg;dlor variation of each
camera was also con ned to a single image in the nal highespsequence. These short-
lived variations were then averaged by our eyes over seframales. Once we slice the
images, the color offsets of the images also create a sligatern in the video. Note
that some color variations, especially for specular objeate unavoidable for a multi-
camera system.The reader is once again encouraged to \@exiddns on the companion
CD to appreciate these effects. The unsliced video of thenskballoon popping, bal-
loon2 distorted.mpg, is included for comparison, as well as ainanus video showing
both balloons, balloons.mpg.

The method presented acquires very high-speed video uslegsely packed array of
lower frame rate cameras with precisely timed exposure ovirsd The parallel capture and
compression architecture of the array lets us stream eakginde nitely. The system
scales to higher frames rates by simply adding more cambrascuracies correcting the
the temporal offset caused by aligning our rolling shutteages are roughly one sixth
of our frame time and limit the scalability of our array. A meofundamental limit to
the scalability of the system is the minimum integrationdiof the camera. At 1560fps
capture, the exposure time for our cameras is three timesitmenum value. If we scale
beyond three times the current frame rate, the exposureowsdf the cameras will begin
to overlap, and our temporal resolution will no longer matain frame rate.

The possibility of overlapping exposure intervals is a ueideature of our system—no
single camera can expose for longer than the time betweerefalf we can use temporal
super-resolution technigues to recover high-speed imigescameras with overlapping
exposures, we could scale the frame rate even higher thamérse of the minimum expo-
sure time. As exposure times decrease at very high fram® ratage sensors become light
limited. Typically, high-speed cameras solve this by iasiag the size of their pixels and
using very bright lights. Applying temporal super-res@uatoverlapped high-speed expo-
sures is another possible way to increase the signal-semaiio of a high-speed multi-
camera system. To see if these ideas show promise, | apbkddrmporal super-resolution
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Figure 5.12: Comparison of the sliced and unsliced 1560ffiedrapop. The top set

of ten pictures are interleaved rolling shutter images. bakoon appears to pop from
several places at once, and pieces of it disappear. Prapedynpling the volume of images
produces the lower set of ten images, revealing the trueesbiaihe popping balloon.

method presented by Shechtman [48] to video of a fan Imedhwsih exposure window
that spanned four high-speed frame times. The temporairakgt process was omitted
because the convolution that relates high-speed framesartblorred images is known.
Figure 5.13 shows a comparison between the blurred bladeretults of the temporal
super-resolution, and the blade captured in the samenightith a one frame exposure
window. Encouragingly, the deblurred image becomes shaipeless noisy.

There are several opportunities for improving this work.e@ma more sophisticated
alignment method that did not suffer from arti cial motiatt¢r for objects off our assumed
focal plane. Another is combining the high-speed methoti wiher multiple camera ap-
plications. In the next chapter, | will discuss an applicatihat does both—spatiotemporal
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@) (b) (c)

Figure 5.13: Overlapped exposures with temporal sup@iurtsn. (a) Fan blades Imed
with an exposure window four high-speed frames long. (b) geml super-resolution
yields a sharper, less noisy image. Note that sharp fedikeethe specular highlights and
stationary edges are preserved. (c) A contrast enhancegkiofahe fan Imed under the
same lighting with an exposure window one fourth as long.eNbe highly noisy image.

view interpolation.
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Chapter 6

Application #3: Spatiotemporal View
Interpolation

The synthetic aperture and high-speed videography apiplitsapresented in the last two
chapters use an array of cameras, accurate calibratiorpracte camera control to en-
hance performance along a single metric. Nothing preventsom using this set of tools
to simultaneously improve multiple aspects of camera perémce. For example, we could
create a high-speed, synthetic aperture video camera sisiggered sets of synchronized
cameras spread across the synthetic aperture. Anothebitipss/ould be a high dynamic
range, high-resolution video camera constructed from camlesters, where the cameras
in each cluster have the same eld of view but varying expedimes, and their elds of
view abut.

This chapter explores using a dense array of cameras wiglgestad trigger times to
increase our sampling resolution in both space and timepfatictemporal view interpola-
tion. We look at the more general problem of optimal samppatgerns and interpolation
methods for the spatiotemporal volume of images that theecararray records. Large
video camera arrays are typically synchronized, but we dhatvstaggering camera trig-
gers provides a much richer set of samples on which to basettdrpolation. Richer sam-
pling not only improves the simplest interpolation methdadending and nearest neighbor,
but also lets one interpolate new space-time views usinglsimobust, image-based meth-
ods with simple calibration. We present a novel optical owtimod that combines a plane

81
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plus parallax framework with knowledge of camera spatial temporal offsets to generate
ow elds for virtual images at new space-time locations. \Mesent results interpolating
video from a 96-camera light eld.

6.1 Introduction

Spatiotemporal view interpolation is the creation of newrseviews from locations and
times different from those in the captured set of images. Siimplest spatiotemporal inter-
polation method is extending light eld rendering to videplmearly interpolating in time.
For this reconstruction to work, the image volume must beddamited. Such pre Itering
adds undesirable blur to the reconstructed images. Evérvery large camera arrays, the
sampling density is not suf ciently high to make the blur ierpeptible. If the images are
not band-limited, the output exhibits ghosting artifadtkis occurs for large disparities or
temporal motions.

To avoid the con icting requirements for sharp images withsampling artifacts, most
image based rendering systems use more sophisticategdlastgon schemes based on an
underlying scene model. The simplest method is to estimatgomin an image based
on local information from neighboring views. Other methapierate increasingly so-
phisticated three-dimensional models of the scene. Magimmation grows less robust
as the “distance” between camera images increases. Morglicated models can handle
more widely separated images, but their runtime increasesae global information is
incorporated.

The temporal sampling strategy for an array of cameras—wlheh camera triggers—
affects reconstruction. Traditionally, designers of ceargrrays have striven to synchro-
nize their cameras. This often leads to much more temporabmbetween camera frames
than parallax motion between neighboring cameras. Insgtadgered triggers are a better
sampling strategy. Improved temporal sampling decreasepdral image motion, allow-
ing us to use simpler, more robust interpolation methodk agsmptical ow. | will present
a spatiotemporal view interpolation method that uses ptaparallax calibration to fac-
tor optical ow into parallax and temporal motion comporeiietween multiple camera
views.
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The next section describes previous work in capturing atedpolating between space-
time image samples. I'll review plane + parallax geometrg aar rendering methods, then
describe a framework for determining how best to distritmie camera array samples in
time. Even for basic linear or nearest neighbor, better sagngreatly improves recon-
struction. Finally, | will describe a method for determigispatial and temporal motion
between several views in space and time using optical ow.

6.2 Previous Work

We have already discussed prior work in camera array desgs@atial view interpolation.
The Manex Entertainment “Bullet Time” system simulated agitsily impossible space-
time camera trajectory through a dynamic scene, but therpath be speci ed in advance.
The cameras capture the views needed for a single cameralpetigoal of the work in this
chapter is to investigate how well one could do “Bullet Timééets as a post-processing
step for a captured set of images without specifying the trayectory in advance.

Spatiotemporal view interpolation depends on samplingtafies and interpolation
methods. Lin and Shum [52] present a maximum camera spaomsfdtic light elds
with a constant depth assumption, and Chai et al. [53] anahgeninimum spatial sam-
pling rate for static light elds including geometry infoiation. Neither of these works
address temporal sampling rates for video light elds. Medet al. [54] and Carceroni
and Kutulakos [55] present methods for interpolating neacsgtime views using arrays of
synchronized cameras with coincident triggers. They eiplisolve for scene re ectance,
structure and motion. By contrast, my system exploits latgelyers of inexpensive sensors
and improved temporal sampling to reduce spatiotempoeal interpolation to a simpler,
image-based task.

6.3 Calibration and Rendering

For this work, the cameras are assembled either in a linelana go we can take advantage
of plane + parallax calibration. Because this calibratioreistral to this work, | will brie y
review it. Starting with a planar array of cameras, we alijroathe camera images to
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a fronto-parallel reference plane using 2D image homogdeaphin the aligned images,
points in the scene lying on the reference plane show nolpataétween views. Points off
the reference plane will have a parallax@y = Dx d, whereDx is the vector fronCy to C;
in the camera plane, artlis the relative depth of the point. This has two implications

Once we have aligned images to a common reference planeath#ap between

aligned images of a single point off the reference plane @igh to determine the
relative locations in the camera plane of all of the camehasshown by Vaish et al.

[7], the camera displacements can be computed robustlyrfratiiple measurements
using a rank-1 factorization via SVD.

Given the relative camera displacements in the camera tla@eelative depth of a
point in one view suf ces to predict its location in all othelews. This provides a
powerful way to combine data from many images.

Once again, we will align all of our input images to a refeeeptane. The aligned
images provide a common space in which to analyze and corml@ns. Levoy and Han-
rahan represent light elds with a two-plage v; s;t) parametrization. For a planar array of
cameras, the aligned images corresp@t) parameterized images for light eld render-
ing, SO measuring motion in the reference plane indicatesrhoch aliasing we would see
in reconstructed light eld images. We will use this framewdoth to analyze temporal
sampling requirements and for determining image ow betveaeighboring space-time
views.

Aligning our images to a reference plane automaticallyexds for geometric variations
in our cameras (excluding translations out of the camenaegpdand radial distortion, which
we have found to be negligible for our application). The iaéid images are generally off-
axis projections, which are visually disturbing. This iga from the aligned views of
the calibration target in gure 4.7-the reference pland alivays appear fronto-parallel,
regardless of the camera position.

The transformation that we need for rendering corrects thaxis projection and is
equivalent to taking a picture of the aligned plane from tiual camera position. Plane
+ parallax calibration does not provide enough informatmdo this. If we x the relative
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Figure 6.1: For synchronized cameras, the motion due tdlgaraetween neighboring
cameras is often much less than the temporal motion betwasres for the same camera.
(a) and (b) are images from adjacent cameras at the samampbme. Disparities between
images are small. (c) shows a picture from the same cameig,asng frame later. The
motion is obvious and much larger.

camera locations produced by our calibration, the missifmyination corresponds to the
eld of view of our reference camera and the distance fromdhmera plane to the refer-
ence plane. These quantities can be determined either ibyatalg the reference camera
relative to the reference plane or simple manual measurerirepractice, we have found

that small errors in these quantities produce very subtigpeetive errors and are visually
negligible.

6.4 Spatiotemporal Sampling

We now turn our attention to the temporal distribution of samples. We assume that our
cameras all run at a single standard video rate (30fps foaway), that they are placed on
a planar grid, and that the desired camera spacing has yabead determined. Figure 6.1
shows aligned synchronized images from our array of 30fdewicameras. Differences
between images are due to two components: parallax betwews and temporal motion
between frames. From the images, it is clear that the terhpoemge motion is much
greater than the parallax for neighboring views in spacetaneé. This suggests that we
should sample more nely temporally to minimize the maximumage motion between
neighboring views in space and time. In the next section hea/$row temporal and spatial
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po Dp = D1 ReferencePlane

Figure 6.2: The temporal and spatial view axes are relatddhbge motion. For a given
scene con guration, we can determine a time $defor which the maximum image motion
between temporal samples is equal to the maximum paraltavelea spatially neighboring
views. If we measure time in increments Of and space in increments of the camera
spacing, then the Manhattan distance betweey)t) view coordinates corresponds to the
maximum possible image motion between views.

view sampling are related by image motion.

6.4.1 Normalizing the Spatial and Temporal Sampling Axes

For a given location of the reference plane at a distafagckom the camera plane, if we
bound the maximum parallax in our aligned images, we carbksttanear and far depth
limits for our scenez,ear andzi,,. Alternatively, we could determine the minimum and
maximum depth limits of our scene and place the referenaeepd@cordingly [53]. The
near and far bounds and camera spa€rgetermine the maximum parallax for any point
between neighboring cameras. Given this near depth figjt and a maximum velocity of
v for any object in the scene, we can determine the time for kvthie maximum possible
temporal image motion equals the maximum parallax betweaghboring views. This is
shown in gure 6.2. The temporal motion f& in cameraCy is greatest if it is at the near
depth limit and moves such that the vecR®i. 1 is orthogonal to the projection ray from
Co attimet + 1. If we assume a narrow eld of view for our lenses, we can agjpnate
this with a vector perpendicular to the reference planewshasvDt. If P has velocity,

the maximum temporal motion of its image@g is Zov%ggear' Equating this motion to the




6.4. SPATIOTEMPORAL SAMPLING 87

maximum parallax foP in a neighboring camera yields

o = DXZnear

o (6.1)

This is the time step for which maximum image motion equalgimam parallax between
neighboring views.

Measuring time in increments of the time st&fpand space in units of camera spacings
provides a normalized set of axes to relate space-time viéwsiew is represented by
coordinategx; y;t) in this system. For nearest-neighbor or weighted intetpridbetween
views, measuring the Manhattan distance between viewiposiin these coordinates will
minimize jitter or ghosting during reconstruction. We usarMattan instead of euclidean
distance because the temporal and parallax motions couddraéiel and in the same direc-
tion. Choosing a temporal sampling period equdbtaevill ensure that maximum temporal
motion between frames will not exceed the maximum paral&wben neighboring views.

Determining maximum scene velocities ahead of time (fomgda, from the biome-
chanics of human motion, or physical constraints such asl@ation due to gravity) can
be dif cult. An alternative to computing the motion is Imgpa representative scene with
synchronized cameras and setting the time step equal t@tiocbhetween the maximum
temporal and parallax motions for neighboring views. Oneld¢d@ven design a camera
array that adaptively determined the time step based oRkedafeature points between
views.

6.4.2 Spatiotemporal Sampling Using Staggered Triggers

The time stefDt tells us the maximum temporal sampling period that will eagempo-
ral resolution at least as good as the spatial resolutioosacriews. One could increase
the temporal sampling rate by using an array of high-speetecas, but this could be
prohibitively expensive and would increase demands on loatawidth, processing, and
storage. By staggering the cameras' trigger times, we caease the temporal sampling
rate without adding new samples.

Our goal is to ensure even sampling in space and time usingaunalized axes. A
convenient way to do this is with a tiled pattern, using th@imum number of evenly
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Figure 6.3: An example trigger pattern for a 3x3 array of casavith nine evenly stag-
gered triggers. The numbers represent the order in whictei@smre. The order was
selected to have even sampling in {xey;t) space across the pattern. We tessellate larger
arrays with patterns such as this one to ensure even spagiotal sampling.

staggered trigger times that gives an offset less Btaifo approximate uniform sampling,

the offsets are distributed evenly within the tile, and tla¢tgrn is then replicated across
the camera array. Figure 6.3 shows an example trigger pdtiea 3x3 array of cameras.

For larger arrays, this pattern is replicated verticallg &orizontally. The pattern can be
truncated at the edges of arrays with dimensions that areabiples of three.

We used the tiled sampling pattern for our experiments sthey were convenient
and we had an approximation of the maximum scene velocitygéoeral scene sampling,
especially with unknown depth and velocity limits, thesétqrais are not optimal. When
Iming scenes with high temporal image velocities, no twarneas should trigger at the
same time. Instead, the trigger times should be evenlyilliséd across the 30Hz frame
time, as in the high-speed video method, to provide the begboral sampling resolution.
For scenes with low velocities, parallax image motion dates over temporal motion, so
we must still ensure even temporal sampling within any legatlow. Thus, in the general
case, the sampling must be temporally uniform over any gz¢iad region of cameras.
One way to accomplish this might be to replicate and gragsiitw a local trigger pattern
across the entire array.

6.5 Interpolating New Views

We can now create our distance measure for interpolatioa pldne + parallax calibration
gives up camera positions in the camera plane up to somefactde We normalize these
positions by dividing by the average space between adj@aenéras, so the distance from
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a camera to its horizontal and vertical neighbors is appnaktly one. Le{(x;y) be the
position of each camera in these normalized coordinatek|etih be the time at which a
given image is acquired, measured in time stedXoBecause we have chosen a time step
that sets the maximum parallax between views equal to thenoax temporal motion
between time steps, the euclidean distance betwee(xikid) coordinates representing
two views is a valid measure of the maximum possible motidwéen the two images.

The simplest way we could interpolate new views would be ® nsarest neighbors
as in the high-speed videography method of chapter 5. Thikodeproduces accept-
able results, but as points move off the reference plané,ithages jitter due to parallax
between views. The perceived jitter can be reduced usimgpalation between several
nearby views. To determine which images to blend and how ighw¢hem, we compute
a Delauney tessellation of our captured image coordinafes.a new view(x;y;t), we
nd the tetrahedron of images in the tessellation contajritre view and blend the images
at its vertices using their barycentric coordinates as ktsigUsing this tessellation and
barycentric weighting ensures that our blending variesahip as we move the virtual
viewpoint. As we leave one tetrahedron, the weights of dedpyertices go to zero. Our
temporal sampling pattern is periodic in time, so we onlydi@ecompute the tessellation
for three 30Hz sampling periods to compute the weights faraitrarily long sequence.

Figure 6.4 shows the bene ts of improved temporal samplimgthis experiment, we
used a 12x8 array of 30fps video cameras similar to that showgure 3.4 to Im me
heading a soccer ball. The cameras were triggered accamliting pattern in gure 6.3,
tiled across the array. We then generated 270fps integzblatleo using several methods.
First, we used a cross-dissolve between sequential franteggaamera to simulate linear
interpolation for a synchronized array. The motion of thecgs ball between captured
frames is completely absent. Next, we used nearest-neighigopolation, which assem-
bles a video sequence using video captured at the propefriimmeneighboring cameras.
This produces sharp images and captures the path of thébiaihe motion is jittered due
to parallax between views. Finally, we used the barycememghted averaging described
previously. This reduces the ball's motion jitter but irdtaes ghosting.

Staggering the cameras clearly improves our temporaluenland results in much
better results even for simple nearest-neighbor and weigimterpolation. Because our
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Figure 6.4: Better temporal sampling improves interpotatia) Linear interpolation be-
tween frames in time for a synchronized camera array is jasbss-dissolve. (b) Nearest-
neighbor interpolation using staggered cameras prodinzep $mages, but this composite
of multiple images shows that the path of the ball is jittedeé to parallax between differ-
ent cameras. (c) Weighted interpolation using the nearesfsvin time and space reduces
the perceived jitter but causes ghost images.

input images are not band-limited in space and time, news/iaterpolated with either of
these methods will always suffer from artifacts if the moti®tween views in time or space
is too great. One could imagine pre Itering spatially asatésed in [5], or temporally by
using overlapped exposure windows, but pre ltering adddasirable blur to our images.
In the next section, we improve our space-time view intaafpoh by analyzing the motion
between captured images.

6.6 Multi-baseline Spatiotemporal Optical Flow

We have seen that distributing samples from a dense canrasaraore evenly in time im-
proves spatiotemporal view interpolation using nearegirbor or weighted interpolation.
Reducing the image motion between captured spatiotempiesas\can also decrease the
complexity or increase the robustness of other interpmtatiethods. The combination of
dense cameras, improved temporal sampling, and plane #gxatalibration allows one
to compute new views robustly using optical ow. We call thisulti-baseline spatiotem-
poral optical ow” because it computes ow using data from ktiple images at different
spatial and temporal displacements (also known and basglin
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We extended Black and Anandan's optical ow method [56] usinde available on the
author's web site. Their algorithm is known to handle vimas of the intensity constancy
and smoothness assumptions well using robust estimatiarses a standard hierarchical
framework to capture large image motions, but can fail dueasking when small regions
of the scene move very differently from a dominant backgeb[sY]. For our 30fps syn-
chronized juggling sequence, the algorithm succeededdegtwameras at the same time
but failed between subsequent frames from the same caméra.motion of the small
juggled balls was masked by the stationary background. @Queceetimed the cameras,
the motion of the balls was greatly reduced, and the algaritbomputed ow accurately
between pairs of images captured at neighboring locatindgime steps.

Our modi ed spatiotemporal optical ow algorithm has two ved features. First, we
solve for a ow eld at the (x;y;t) location of our desired virtual view. This was inspired
by the bidirectional ow of Kang et al. [58], who observe tHat view interpolation, com-
puting the ow at the new view position instead of either ssaiimage handles degenerate
ow cases better and avoids the hole- lling problems of f@md-warping when creating
new views. They use this to compute ow at a frame halfway @t two images in a
video sequence. Typically, optical ow methods will compubw between two images by
iteratively warping one towards the other. They calculaie at the halfway point between
two frames by assuming symmetric ow and iteratively wargpimoth images to the mid-
point. We extend the method to compute ow at a desired viewunnormalizedx; y;t)
view space. We iteratively warp the nearest four captureates toward the virtual view
and minimize the weighted sum of the robust pairwise datxrgand a robust smoothness
error.

Motion cannot be modeled consistently for four images & bht space-time locations
using just horizontal and vertical image ow. The second poment of this algorithm is
simultaneously accounting for parallax and temporal nmtd/e decompose optical ow
into the traditional two-dimensional temporal ow plus arth ow term for relative depth
that accounts for parallax between views. The standarasitieconstancy equation for
optical ow is

[(i;);t) = I(i+ udt; j+ vdt;t+ dt) (6.2)
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Here,(i; j;t) represent the pixel image coordinates and time,waaddv are the horizontal
and vertical motion at an image point. We usad j in place of the usuat andy to avoid
confusion with our view coordinatés; y;t).

Plane + parallax calibration produces the relative disgtaents of all of our cameras,
and we know that parallax between two views is the producheirtdisplacement and
the point's relative depth. Our modi ed intensity constgregjuation includes new terms
to handle parallax. It represents constancy between aedegirtual view and a nearby
captured image at some offqgtdx; ddy; ddt) in the space of source images. It accounts
for the relative depthd, at each pixel as well as the temporal dw;V):

lirtual (15 13X V1) = lsouredi + udt + ddx; j + vdt + ddy;t + dt) (6.3)

This equation can be solved for each pixel using a modi catid Black's robust optical
ow. Appendix A describes the implementation details.

We compute ow using four images from the tetrahedron whiobleses the desired
view in the same Delauney triangulation as before. The image progressively warped
toward the common virtual view at each iteration of the alpon. We cannot test the
intensity constancy equation for each warped image agaimstual view, so we instead
minimize the error between the four warped images themsgliseng the sum of the pair-
wise robust intensity constancy error estimators. Thislpces a single ow map, which
can be used to warp the four source images to the virtual Wi¢svcurrently do not reason
about occlusions and simply blend the owed images using tieycentric weights in the
tetrahedron.

Figure 6.5 compares view interpolation results using oatispemporal optical ow
versus a weighted average. Because the computed ow is ¢ensi®r the four views,
when the source images are warped and blended, the ballragbeap. The sinterpl.mp4
video on the companion CD-ROM compares blending, neareghber and ow-based
interpolation for this dataset. The sequences in which i@point is xed show that the
ow-based interpolation is exactly the registration regui to remove alignment errors in
the high-speed video method of the previous chapter.

To allow a greater range of virtual camera movement, we cored our cameras in a
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Figure 6.5: View interpolation using space-time opticalv.qa) Interpolated 270fps video
using weighted average of four source images. (b) Intetpdla70fps video using optical
ow. The four source images were warped according to the agetg ow and then aver-
aged using the same weights as in image a. No double imagpeesent because parallax
and motion for the ball were correctly recovered.

30 wide by 3 tall array. We used the same 3x3 trigger ordetilggl across the array. In
stinterp2.mp4 on the CD-ROM, we show another soccer sequenghiah we alternate
smoothly between rendering from one view position at 27@dseezing time and render-
ing from novel viewing positions. Figure 6.6 shows twenignfires with a slowly varying
viewing positions and times. Figure 6.7 shows ve framesnspag the spatial viewing
range of the array.

6.7 Discussion

Our multiple camera array allows us to control the image dasthat are recorded from the
spatiotemporal volume a scene generates, and the samplitggrpchosen greatly affects
the complexity of the view interpolation task. While in thgat is possible to simply
resample a linear ltered version of the samples to geneamnate views, even with large
numbers of inexpensive cameras, it seems unlikely one afilin high enough sampling
density to prevent either blurred images or ghosting atstanstead, the correct placement
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of samples allows the use of simpler modeling approachisrétan none at all. The key
guestion is, how sophisticated a model is needed and whatliseniasis allows the most
robust modeling methods to be used to construct a desirecvie

For many interpolation methods, minimizing image moticade to better quality view
synthesis, so we use minimizing image motion to guide oupsaiplacement. Given our
relatively planar camera array, we use a very simple planarallax calibration for inter-
polation in space. For images aligned to a reference plgraias view motion results in
parallax for points not on the reference plane. This motiastie balanced against tem-
poral image motion. In our camera array this disparity motsomodest between adjacent
cameras, and is much smaller than the true motion from franframe.

Staggering camera trigger in time distributes samplesdoae temporal image motion
between neighboring views without adding new samples. layastaggered time sampling
is never a bad sampling strategy. Clearly the denser timelsarhplp for scenes with high
image motion. For scenes with small motion, the denser tengpses do no harm. Since
the true image motion is small, it is easy to estimate the a@@ny intermediate time, un-
doing the time skew adds little error. Since the spatial $engpensity remains unchanged,
it does not change the view interpolation problem at all. &a#mporal sampling lets us
apply relatively simple, fairly robust models like opticalv to view interpolation in time
and space. We solve for temporal image motion and image mdtie to parallax which
improves our interpolation.

Because our ow-based view interpolation methods are loited, constraints on the
camera timings are also local. They need to sample evenlyarydocal neighborhood.
We use a simple tessellated pattern with locally uniformarg at the interior and across
boundaries. Algorithms that aggregate data from an entregy af cameras will bene t
from different time stagger patterns and raises the intiegequestion of nding an optimal
sampling pattern for a few of the more sophisticated modskld methods.

While it is tempting to construct ordered dither patternsdneyate unique trigger times
for all cameras there is a tension between staggered shtdteicrease temporal resolution
and models that exploit the rigid-body nature of a singleetslice. This seems to be an
exciting area for further research.

Staggered trigger times for camera arrays increase temm@s@ution with no extra
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cost in hardware or bandwidth, but have other limits. Onel&mental limit is the num-

ber of photons imaged by the cameras if the exposure windosvsan-overlapping. The
aperture time for each camera is set to be equal to the siiaiesdifference between the
cameras. While this minimizes unintended motion blur, athgasharp images in “Bul-

let time” camera motion, at some point the number of photonthé scene will be too
small, and the resulting image signal to noise ratio willihdg increase. This gives rise
to another dimension that needs to be explored—optimiziagélation between the mini-
mum spacing between time samples and the aperture of theasme mentioned earlier,
Shechtman et al. [48] have done some promising work in thésa,ansing multiple un-

synchronized cameras with overlapping exposures to eit@imotion blur and motion
aliasing in a video sequence.

For our image-based methods, uniform spatiotemporal sagfinits image motion
and enhances the performance of our interpolation metiddsanalyzed spatiotemporal
sampling from the perspective of interpolation with a canstiepth assumption and related
the temporal and spatial axes with maximum image motiongaparallax and time. That
constant-depth assumption is one of the limitations of wsk. In the future, | would
like to enable more general scene geometries. The spapotraimoptical ow method
generates signi cantly better results than weighted ayieg but still suffers from the
standard vulnerabilities of optical ow, especially ocsians and masking.
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Figure 6.6: Twenty sequential frames from an interpolateléw sequence demonstrat-
ing slowly varying view positions and times. The input datarevcaptured using a 30x3

array of cameras with nine different trigger times. All vieshown are synthesized. Be-
neath each image are the (x,t) view coordinates, with x itswofiaverage camera spacings
(roughly three inches) and t in milliseconds. Motion is mew&dent looking across rows

or along diagonals from top left to bottom right.

-15.0 -8.2 0.47 7.23 14.0

Figure 6.7: Five synthesized views showing the spatial wigwange for the 30x3 con g-
uration. View spatial coordinate is again in units of cansgacings, roughly three inches.



Chapter 7
Conclusions

Digital video cameras are becoming cheap and widespreeaticg new opportunities for
increased imaging performance. Researchers in this spaocam@er several obstacles. For
system designers, large video camera arrays generatetdat@sthat overwhelm com-
modity personal computers and storage media. Inexpensivenodity cameras do not
offer the degree of control or exibility required for resea. Assuming some system for
collecting data from many cameras, researchers must desfibeation methods that scale
to large numbers of cameras, and vision and graphics dhgasithat robustly account for
the lower image quality and more varied geometric and radtamproperties of inexpen-
sive camera arrays.

The architecture in this thesis addresses the issues efiadarge camera array design.
It exploits CMOS image sensors, IEEE1394 communication aR&® video compression
to control and capture video from very large numbers of cas&y a few PCs. A exible
mounting system lets us explore many different con gunasi@nd applications. | have
shown three applications demonstrating that we can effdgtcombine data from many
inexpensive sensors to increase imaging performance.

Although synthetic aperture photography has been donestatit scenes before, we
were the rst to capture synthetic aperture videos or to tigetéchnique to look through
partial occluders. Our live synthetic aperture system witbractive focal plane adjustment
also shows the value of low-level image processing powdreatameras.

The high-speed videography method increases the effeetmporal sampling rate of

97
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our system by staggering the trigger times of the cameras.cAllecompensate for the
electronic rolling shutter in many low-end sensors by ijittg the camera triggers and re-
sampling their output. We have pushed this technique up@&0fps video using 52 tightly
packed, 30fps cameras. The parallel compression in thg ktsaus stream continuously
at this frame rate.

The spatiotemporal view interpolation system | proposeuiemeously extends imag-
ing performance along multiple axes—view position and tiniieshows that with inex-
pensive cameras, we can reduce view interpolation of dyn@egenes from estimating
three-dimensional structure and motion to determinin@lfgat and two-dimensional im-
age velocities. Much of this gain is due to improved sampiiogn staggered trigger times,
which minimizes image motion between captured views andlesaoptical- ow based
algorithms. The multi-baseline, spatiotemporal opticalv method not only presents a
simple framework for synthesizing new virtual views, buigatlemonstrates that the cali-
bration is adequate for vision algorithms like optical owhich are sensitive to noise and
radiometric camera variations.

We have shown a video capture system for large arrays of @msiype cameras and
applications proving that we can use these cameras foestiag high-performance imag-
ing, computer vision, and graphics applications. Where dgwé&om here? Our recent
experiments with real-time applications using the camamydave produced encouraging
results, but performance limits imposed by the architectue already apparent. We can
do low-level image processing at each camera, but imagefidamtamultiple cameras can
only be combined at the host PC. Thus, the host PCs are thertsatkléor our live syn-
thetic aperture system. The same would be true of any orythght eld compression
method that accounts for data redundancy between cameraseFlesigns should clearly
allow data to ow between cameras. That said, we must devappications before we
can determine the performance needs for a next generatiay, and the array as is has
already proved to be a valuable tool in that research.

SAP and high-speed videography are but two of the high-x atstlenumerated in
chapter 2, and it would be interesting to pursue others. Asgiahe on-going research
effort involving the camera array, we are currently expigrthe high-resolution approach
using cameras with abutting elds of view. We hope to takeaadage of the per-camera
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processing to individually meter each camera and extendythamic range of the mosaic,
too. Some global communication to ensure smooth transifiometering across the array
might be necessary.

There still remain several other untapped high-x dimerssioilynamic range, depth of
eld, spectral resolution, low noise, and so on. One questaised by the high-x appli-
cations is, when can a cluster of cameras outperform a singdee expensive camera?
For many applications, it will depend on the economics aralityuof inexpensive sensors
compared to the available performance gain of using manyecasn For example, because
the noise reduction from averaging images frowameras grows only agrt(n), if inex-
pensive cameras have much worse noise performance tharpgbesa/e alternative (due
to poor optics, more dark current, and so on), they will beblm#o affordably close the
gap. By contrast, for high-resolution imaging using camevils abutting elds of view,
resolution grows linearly with the number of cameras, whost most likely grows much
faster when increasing the resolution of a single cameratH® reason, | would expect
the multiple camera approach to be superior.

For other applications, the consequences of imaging withiphel cameras will fun-
damentally limit performance regardless of sensor qualitgost. For example, even if
our high-speed videography method were not limited by ther fight-gathering ability
of inexpensive sensors, we would still have to contend witbre caused by the multiple
camera centers of projection. With perfect radiometric eacalibration, we will still
see differences between images from adjacent cameras dpedolarities and occlusions.
These types are artifacts are unavoidable. Optical mettwoelssure a common center of
projection might be acceptable for some applications, btifor high-speed videography
because they reduce the light that reaches each camera.

Attempting to outperform single, high-end cameras willyadruitful for some appli-
cations, but an even richer area to explore is performanice ¢jaat are impossible with a
single camera. View interpolation itself is one example other is the synthetic aperture
matting technique | mention in chapter 4. Summing contrdng only from pixels in the
input images that see through the occluder eliminates ttegfound instead of blurring it
away and produces images with greater contrast. This rearlioperation would be impos-
sible with a single large-aperture camera. Surely therst @her opportunities for these
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sorts of advances.

The possibilities for improved imaging using arrays of ipersive cameras are vast,
but the tools for exploring them are rare. When | started thigegt, | did not anticipate
that completely recon guring an array of one hundred camévanew applications would
someday become a common and undaunting task. | hope this ties convinced the
reader not only that we can provide the control, capture afillration capabilities neces-
sary to easily experiment with hundreds of cameras, butthsothese experiments will
yield rich results.



Appendix A

Spatiotemporal optical ow
Implementation

In this appendix, | will describe in detail how we solve foraiptemporal optical ow at
virtual view locations. To review, the goal of multibas@ispatiotemporal optical ow is to
determine components of image motion due to temporal scetiemand parallax between
views of a scene from different positions and times. To mdke/\nterpolation simple,
we solve for this ow for pixels in the image at the virtual weng position and time. Our
views are parametrized lx; y;t), where(x;y) is the location in our plane of cameras, and
t is the time the image was captured. We use four source viessrpute ow because
that is the minimum number to enclose a given virtual view um 8D space-time view
coordinates.

We assume that our cameras all lie in a plane and use planeattapacalibration to
determine the displacements, between the cameras and some reference camera. Note
that although we use a reference camera for the displacsrtigpically a central camera),
our algorithm is still truly multi-view, considering all ogeras equally, because only the
relative displacements between cameras matter. We alightae images from all cameras
to a common reference plane using planar homographies.elalitned images, for two
cameras separated in the camera plane by some relativaaispénik, the parallax for a
given point at relative deptiv is justwx.

We represent temporal scene motion by its two-dimensiorgégtion (u; v) onto the
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image plane, similarly to traditional optical ow. Espeltyefor cameras aligned on a plane,
estimating motion on the z-axis can be ill-conditioned. Beseathe camera trigger times
are deliberately offset to increase the temporal sampésglution and ensure that for any
virtual view there are several captured views from nearbgtions and times, the combined
motion due temporal and spatial view changes is minimized.

Multibaseline spatiotemporal optical ow estimates thetantaneousu; v;w) image
ow for each pixel in a virtual view at position and timg;y;t). It is called multibase-
line because it considers multiple source images for eathaviview, and the spatial and
temporal distances from the arbitrary virtual view to eatthe nearby captured ones are
generally different. For each pixél, j) in the virtual view, we attempt to solve the follow-
ing equation with respect to each source image:

lvirtual (15 1 X Y5 1) = lsourcdi + udt + wdx; j + vdt + wdy; t + dt)

Optical ow methods traditionally compute a ow error metrby warping one image to-

ward the other based on the computed ow and measuring tlféérehce. Because the

virtual image does not exist, we cannot directly compare gdach warped source image.
Instead, we measure the accuracy of the computed ow by wgnbie four nearby space-
time views to the virtual view and comparing them to each othe

At this point, we adopt the robust optical ow framework debed by Michael Black
in [56]. He determines ow in one image with respect to anotby minimizing a robust
error function with data conservation and spatial smoathiierms. The data conservation
term at each pixel is derived from the intensity constaneayagiqn:

Ep = ro(lxu+ lyv+ I; sq)

Here, Iy, Iy andl; are the spatial and temporal image derivatives, aj{@rr;s) is some
error estimator.r(x) = x2 would correspond to squared error estimation. The spatial
coherence term measures the spatial derivative of the cehpaw at each pixel:

Es= /| & (ro(u uns2)+ ra(v vaS2))
n2G



103

whereG are the north, south, east and west neighboring pixels,uarehd u, are the
computed ow for pixel n in that set/ sets the relative weight of the smoothness term
versus the data term.

Motion discontinuities and occlusions violate assumiohsmoothness and intensity
constancy, and create outlier errors that deviate greatiy the Gaussian measurement
error assumed by least squares. These outliers have iateljitarge in uences on squared
errors. Black introduces robust error estimators that redbe effect of these outliers.
For his ow implementation, he uses the Lorentzian, whodee/a (x;s) and derivative
y (x;s) with respect to a measured error x are:

1 x 2
=log 1+ > =
rs(x) = log 5 3
yS(X): 252+X2

s is a scale factor related to the expected values of inliedsoantliers.

We too use the Lorentzian estimator. Now, we can formalizeeaor metric. Although
we solve for ow using multiple source images, we compute the for pixels in a single
virtual image. Thus, the spatial coherence error tEgms unchanged. Our data coherence
term must measure errors between four source images warkd virtual view accord-
ing to our three-component owu;Vv;w). To use gradient-based optical ow, we need to
compute temporal derivatives between images, so we metmiseim of pairwise robust
errors between warped images. Here, we de ne three new ijearfor each source view
relative to the virtual viewa, = t, ty is the temporal offset from the virtual image cap-
tured at timely to source imagé, captured at timén. (bnx; bny) = (Xn Xv;¥n W) is the
relative displacement in the camera plane from the virtiednto source view,,. The data
conservation error term at each pixel is:

Ep = é ri Ixpa(U(@m  a@n)+ W(bmx  bny)) + ly.(V(@m an)
mén

+W(bmy  Dny)) + ltyyns S1

Here, Iy, is the average of the horizontal image spatial derivatimesnagel, andlm at
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the pixel, and likewise for the vertical spatial derivatlyg, . is simplyly, I, for each

ltm;n

pixel.

Now that we have de ned robust error functions for multidase spatiotemporal op-
tical ow, all that remains is to solve fofu;v;w) at each pixel to minimize the error. We
modi ed Black's publicly available code that calculates okierarchically using grad-
uated non-convexity (GNC) and successive over-relaxa8@R). Hierarchical methods
Iter and downsample the input images in order to capturgdanotions using a gradient-
based framework. GNC replaces a non-convex error term withngex one to guarantee
a global minimum, then iterates while adjusting the erramteteadily towards the desired
non-convex one. Successive over-relaxation is an iteratiethod for the partial differ-
ential equations the result from the data consistency arab#mess terms. Readers are
referred to [56] more details.

The iterative SOR update equation for minimiziBg= Ep + Eg at stepn+ 1 has the
same form as in Black's work, but we have to update three teomgiv:

1 JE
(n+1) — () - =
u u W U Tu
1 YE
n+1) — \[n)
W W W W
1 9JE
n+1) — n) S
w wt W W) Tw

where < w < 2 is a parameter used to over correct the estimates, farandw at each

step and speed convergence. The rst partial derivativéswith respect tay, v, andw are
!

E o o
ﬁ_ = a le;n(am an))’l(e”m;n; Sl) + 1 a. yZ(u Un; 32)
fu mén n2G
!
E o o
v a |Ym;n(am an))’l(errm;nisl) + 1 a )/2(V Vn;32)
™ men n2G
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!
E o
;]]_W = A (xp(bmx by a(€rrmn) + ly,(Bmy  bny)y 1(€rrmn))
mén

+1 4 y2(w Wn;S2)
n2G

whereG as before are north, south, east and west neighbors of esehmpiandn are
from the sef 1,2,3,4 of input images, andrry, is the intensity constancy error:

erMmn = lxpa(U(@m  a@n)+ W(bmx  bnx)) + lyo(M(@m  @n)+ W(bmy bny)) + i,

T(u), T(v), and T(w) are upper bounds on the second partiaate/es of E:
!
o |>%m;n(am an)? N 4/

T(u): _
msn Sf S22
|
12 (am an)® a4
Ymn\&m n
TW= 4 ) t 32
mén 1 2

|
o (lxnyn(Bmx  brx) + lyn (Bmx bny))2 +4/

Tw= a
mén 512 322

With this, we have all of the pieces to solve for spatioterapoptical ow using simulta-

neous over-relaxation.
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